Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

manifolds an contact structures

Legendrian knots

Floer homology and Legendrian invariants

Floer homology and invariants of Legendrian knots

Marco Golla, Rényi Institute

2014/05/21

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian 1 Stein manifolds and contact structures

2 Legendrian knots

3 Floer homology and Legendrian invariants

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants

Definition

A **Stein manifold** is a smooth, proper analytic subset of \mathbb{C}^N , with the induced complex structure.

Example

 \mathbb{C}^N itself is trivially a Stein manifold.

Example

A smooth affine variety is a Stein manifold.

Stein manifolds and contact structures

Legendria knots

Floer homology an Legendrian invariants Any Stein *n*-manifold X admits an exhausting, strictly plurisubharmonic function ρ . Its closed sublevels are called *Stein domains*.

 ρ is close to a Morse function with singular points of index $\leq n$, hence \exists handle decomposition of X with handles of index $\leq n$.

Example

When $X \subset \mathbb{C}^n$, the square of the radial function $\rho: (z_1, \ldots, z_n) \mapsto \sum |z_j|^2$ is exhausting and strictly plurisubharmonic.

Legendria knots

Floer homology and Legendrian invariants Any regular level set is a contact manifold.

Definition

A **contact manifold** is a pair (M^{2n+1}, ξ) , where:

- M is an oriented 2n + 1-dimensional smooth manifold;
- $\xi = \ker \alpha$ is a hyperplane field, and α is a 1-form that satisfies $\alpha \wedge d\alpha^n > 0$.

When $M = f^{-1}(r)$ for a regular value r, ξ is given by $J(TM) \cap TM$.

Example

Consider $X = \mathbb{C}^n$, $f = \rho$, r > 0: r is regular for ρ , and the corresponding contact manifold is the standard contact 2n-1-sphere, $(S^{2n-1}, \xi_{\rm st})$.

Stein manifolds and contact structures

Legendria knots

Floer homology an Legendrian invariants Stein surfaces, (*i.e.* Stein manifolds of complex dimension 2 – real dimension 4) admit a handle decomposition with handles of index 0, 1 and 2.

The 2-handles are attached along *Legendrian knots*.

Definition

A knot *L* in (M^3, ξ) is **Legendrian** if $TL \subset \xi$.

Stein manifolds and contact structures

Legendrian knots

Floer homology and Legendrian 1 Stein manifolds and contact structures

2 Legendrian knots

3 Floer homology and Legendrian invariants

Stein manifolds ar contact structures

Legendrian knots

Floer homology and Legendrian invariants $L \subset S^3$ topological knot bounds a *Seifert surface*.

The Seifert genus of L is g(L) = minimal genus of a Seifert surface.

Stein manifolds and contact structures

Legendrian knots

Floer homology an Legendrian invariants Let $W = f^{-1}((-\infty, r])$, and suppose f has only one critical point in W, which has index 2.

The attachment of a 4-dimensional 2-handle to B^4 needs:

- A knot: the attaching circle L.
- An integer: the framing f.

Definition

The **Thurston-Bennequin number** of *L* is tb(L) = f + 1.

The Thurston-Bennequin number of L measures the twisting of the contact structure ξ along L.

Stein manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants Let $W = f^{-1}((-\infty, r])$, and suppose f has only one critical point in W, which has index 2.

 $H_2(W; \mathbb{Z}) = \mathbb{Z}$; orienting L gives a generator A.

Definition

The **rotation number** of *L* is $r(L) = \langle c_1(J), A \rangle$.

The rotation number measures the obstruction of extending the "tangent" trivialisation of $\xi|F$ to a global trivialisation.

Stein manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants

Theorem (Bennequin inequality)

$$tb(L)+|r(L)|\leq 2g(L)-1$$

Example

For the unknot, $g(\mathcal{O}) = 0$, so $tb(\mathcal{O}) \leq -1$.

Note: there is no Stein structure on $S^2 \times \mathbb{R}^2$ (even though there is a complex structure).

Stein manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants

Theorem (Bennequin inequality)

$$tb(L)+|r(L)|\leq 2g(L)-1$$

Example

For the unknot, $g(\mathcal{O}) = 0$, so $tb(\mathcal{O}) \leq -1$.

Note: there is no Stein structure on $S^2 \times \mathbb{R}^2$ (even though there is a complex structure).

There is no higher-dimensional analogue of Bennequin inequality in higher dimensions: no nontrivial obstructions for the existence of Stein structures (Eliashberg).

Stein manifolds and contact

Legendrian knots

Floer homology and Legendrian invariants There is a more concrete approach to Legendrian knots. Removing a point from $(S^3, \xi_{\rm st})$ yields $(\mathbb{R}^3, \ker(dz - ydx))$.

Source: Wikipedia

Stein manifolds and contact structures

Legendrian knots

Floer homology and Legendrian invariants Projecting to the (x, z)-plane gives a nice, visual form for Legendrian knots.

The front projections of a Legendrian unknot and of a right-handed Legendrian trefoil.

Stein manifolds ar contact structures

Legendrian knots

Floer homology and Legendrian invariants One can compute the *classical invariants tb* and r from the front projection.

$$tb(L) = wr(L) - c(L)/2$$

$$r(L) = (c^{\downarrow}(L) - c^{\uparrow}(L))/2$$

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants 1 Stein manifolds and contact structures

2 Legendrian knots

3 Floer homology and Legendrian invariants

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants Juhász defined **sutured Floer homology** $SFH(M,\Gamma)$, that is a finite-dimensional \mathbb{F} -vector space associated to a (balanced) sutured manifold (M,Γ) .

Example

 $L \subset S^3$, N regular neighbourhood of L (*i.e.* a solid torus) and R_+ neighbourhood of a curve on ∂N . ($S^3 \setminus Int(N), \partial R_+$) is a sutured manifold.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants Legendrian knots have standard neighbourhoods.

On $\nu(L)$ there are two parallel, oppositely oriented curves $\gamma_L, -\gamma_L$. Each of this curves $links\ tb(L)$ times with L. We call S_L^3 the sutured manifold $(S^3\setminus \operatorname{Int}(\nu(L)), \{\gamma_L, -\gamma_L\})$.

Honda-Kazez-Matić defined an invariant EH(L) in $SFH(-S_L^3)$.

Example

For the unknot \mathcal{O} above, $SFH(-S_{\mathcal{O}}^3) = \mathbb{F}_{(0)}$, and $EH(\mathcal{O})$ is the only nonzero element.

For the trefoil L above, $SFH(-S_L^3) = \mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$, and EH(L) is the nonzero element in degree 0.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants Ozsváth–Szabó and Rasmussen associate to every (topological) knot L in S^3 a graded $\mathbb{F}[U]$ -module $HFK^-(L)$ (multiplication by U lowers grading by 1).

This module is called the **knot Floer homology** of *L*.

Example

For the unknot \mathcal{O} , $HFK^-(\mathcal{O}) = \mathbb{F}[U]_{(0)}$. For the trefoil $T_{2,3}$, $HFK^-(T_{2,3}) = \mathbb{F}[U]_{(-1)} \oplus \mathbb{F}_{(1)}$.

The knot Floer homology of L is always infinite-dimensional (as a vector space over \mathbb{F}).

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants When L is a Legendrian knot in $(S^3, \xi_{\rm st})$, there is a class $\mathcal{L}(L)$ in $HFK^-(m(L))$ (Lisca–Ozsváth–Stipsicz–Szabó).

This is an *effective* invariant of Legendrian knots (there is also a combinatorial version).

Example

For \mathcal{O} the unknot above: $HFK^-(m(\mathcal{O}))=\mathbb{F}[U]_{(0)}$, and $\mathcal{L}(L)=1$ (i.e. it generates the free part). For L the trefoil above: $HFK^-(m(L))=\mathbb{F}[U]_{(+1)}\oplus\mathbb{F}_{(-1)}$, and $\mathcal{L}(L)=1$.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants There is a related invariant, $\widehat{\mathcal{L}}(L) \in \widehat{HFK}(m(L))$. $\widehat{HFK}(m(L))$ is a finite-dimensional, graded \mathbb{F} -vector space.

Example

For the unknot \mathcal{O} , $\widehat{HFK}(m(\mathcal{O})) = \mathbb{F}_{(0)}$ and $\widehat{\mathcal{L}}(\mathcal{O}) \neq 0$. For the trefoil L, $\widehat{HFK}(m(L)) = \mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$ and $\widehat{\mathcal{L}}(L) \neq 0$ has degree 1.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants There is a related invariant, $\widehat{\mathcal{L}}(L) \in \widehat{HFK}(m(L))$. $\widehat{HFK}(m(L))$ is a finite-dimensional, graded \mathbb{F} -vector space.

Example

For the unknot \mathcal{O} , $\widehat{HFK}(m(\mathcal{O})) = \mathbb{F}_{(0)}$ and $\widehat{\mathcal{L}}(\mathcal{O}) \neq 0$. For the trefoil L, $\widehat{HFK}(m(L)) = \mathbb{F}_{(1)} \oplus \mathbb{F}_{(0)} \oplus \mathbb{F}_{(-1)}$ and $\widehat{\mathcal{L}}(L) \neq 0$ has degree 1.

Theorem (Stipsicz-Vértesi)

There is a "natural" map $SFH(-S_L^3) \to \widehat{HFK}(m(L))$ that takes EH(L) to $\widehat{\mathcal{L}}(L)$.

Stein manifolds and contact structures

Legendria: knots

Floer homology and Legendrian invariants There are two operations on Legendrian knots, called **positive** and **negative stabilisation**.

At the diagram level, one just adds a zig-zag.

If L^{\pm} is a \pm stabilisation of L, then $tb(L^{\pm})=tb(L)-1$ and $r(L^{\pm})=r(L)\mp 1$.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants Stabilisations induce maps $\sigma_{\pm}: SFH(-S_L^3) \to SFH(-S_{L^n}^3)$, and there are an infinite family of groups $G_n = SFH(-S_{L^{(n)}}^3)$ together with maps $\sigma_{\pm}: G_n \to G_{n+1}$.

Let
$$G(L) = \underline{\lim}(G_n, \sigma_-)$$
.

Stein manifolds and contact structures

Legendria knots

Floer homology and Legendrian invariants Stabilisations induce maps $\sigma_{\pm}: SFH(-S_L^3) \to SFH(-S_{L^\pm}^3)$, and there are an infinite family of groups $G_n = SFH(-S_{L^{(n)}}^3)$ together with maps $\sigma_{\pm}: G_n \to G_{n+1}$.

Let
$$G(L) = \varinjlim (G_n, \sigma_-)$$
.

Theorem (G.)

- The group G(L) has an action induced by the map σ_+ .
- $\exists \Psi : G(L) \rightarrow HFK(m(L))$, linear $\mathbb{F}[U]$ -isomorphism.
- $\Psi([EH(L)]) = \mathcal{L}(L)$.
- $\mathcal{L}(L)$ and $\mathcal{L}(-L)$ together determine EH(L).