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Rényi Institute

Stein
manifolds and
contact
structures

Legendrian
knots

Floer
homology and
Legendrian
invariants

Floer homology and invariants of Legendrian
knots

Marco Golla, Rényi Institute
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Definition
A Stein manifold is a smooth, proper analytic subset of CN ,
with the induced complex structure.

Example

CN itself is trivially a Stein manifold.

Example

A smooth affine variety is a Stein manifold.
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Any Stein n-manifold X admits an exhausting, strictly
plurisubharmonic function ρ. Its closed sublevels are called
Stein domains.

ρ is close to a Morse function with singular points of index ≤ n,
hence ∃ handle decomposition of X with handles of index ≤ n.

Example

When X ⊂ Cn, the square of the radial function
ρ : (z1, . . . , zn) 7→

∑
|zj |2 is exhausting and strictly

plurisubharmonic.



Floer
homology and
invariants of
Legendrian

knots

Marco Golla,
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Any regular level set is a contact manifold.

Definition
A contact manifold is a pair (M2n+1, ξ), where:

• M is an oriented 2n + 1-dimensional smooth manifold;

• ξ = kerα is a hyperplane field, and α is a 1-form that
satisfies α ∧ dαn > 0.

When M = f −1(r) for a regular value r , ξ is given by
J(TM) ∩ TM.

Example

Consider X = Cn, f = ρ, r > 0: r is regular for ρ, and the
corresponding contact manifold is the standard contact
2n − 1-sphere, (S2n−1, ξst).
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Stein surfaces, (i.e. Stein manifolds of complex dimension 2 –
real dimension 4) admit a handle decomposition with handles
of index 0, 1 and 2.

The 2-handles are attached along Legendrian knots.

Definition
A knot L in (M3, ξ) is Legendrian if TL ⊂ ξ.
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L ⊂ S3 topological knot bounds a Seifert surface.

The Seifert genus of L is g(L) = minimal genus of a Seifert
surface.
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Let W = f −1((−∞, r ]), and suppose f has only one critical
point in W , which has index 2.

The attachment of a 4-dimensional 2-handle to B4 needs:

• A knot: the attaching circle L.

• An integer: the framing f .

Definition
The Thurston-Bennequin number of L is tb(L) = f + 1.

The Thurston-Bennequin number of L measures the twisting of
the contact structure ξ along L.
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Let W = f −1((−∞, r ]), and suppose f has only one critical
point in W , which has index 2.

H2(W ;Z) = Z; orienting L gives a generator A.

Definition
The rotation number of L is r(L) = 〈c1(J),A〉.

The rotation number measures the obstruction of extending the
“tangent” trivialisation of ξ|F to a global trivialisation.
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Theorem (Bennequin inequality)

tb(L) + |r(L)| ≤ 2g(L)− 1

Example

For the unknot, g(O) = 0, so tb(O) ≤ −1.

Note: there is no Stein structure on S2 × R2 (even though
there is a complex structure).

There is no higher-dimensional analogue of Bennequin
inequality in higher dimensions: no nontrivial obstructions for
the existence of Stein structures (Eliashberg).
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There is a more concrete approach to Legendrian knots.
Removing a point from (S3, ξst) yields (R3, ker(dz − ydx)).
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z

Source: Wikipedia
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Projecting to the (x , z)-plane gives a nice, visual form for
Legendrian knots.

The front projections of a Legendrian unknot and of a
right-handed Legendrian trefoil.
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One can compute the classical invariants tb and r from the
front projection.

++ +
↑

↑↓

↓

tb(L) = wr(L)− c(L)/2
r(L) = (c↓(L)− c↑(L))/2
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Juhász defined sutured Floer homology SFH(M, Γ), that is a
finite-dimensional F-vector space associated to a (balanced)
sutured manifold (M, Γ).

Example

L ⊂ S3, N regular neighbourhood of L (i.e. a solid torus) and
R+ neighbourhood of a curve on ∂N. (S3 \ Int(N), ∂R+) is a
sutured manifold.
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Legendrian knots have standard neighbourhoods.

On ν(L) there are two parallel, oppositely oriented curves
γL,−γL. Each of this curves links tb(L) times with L.
We call S3

L the sutured manifold (S3 \ Int(ν(L)), {γL,−γL}).

Honda-Kazez-Matić defined an invariant EH(L) in SFH(−S3
L).

Example

For the unknot O above, SFH(−S3
O) = F(0), and EH(O) is the

only nonzero element.
For the trefoil L above, SFH(−S3

L) = F(1) ⊕ F(0) ⊕ F(−1), and
EH(L) is the nonzero element in degree 0.
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Ozsváth–Szabó and Rasmussen associate to every (topological)
knot L in S3 a graded F[U]-module HFK−(L) (multiplication
by U lowers grading by 1).

This module is called the knot Floer homology of L.

Example

For the unknot O, HFK−(O) = F[U](0).
For the trefoil T2,3, HFK−(T2,3) = F[U](−1) ⊕ F(1).

The knot Floer homology of L is always infinite-dimensional (as
a vector space over F).
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When L is a Legendrian knot in (S3, ξst), there is a class L(L)
in HFK−(m(L)) (Lisca–Ozsváth–Stipsicz–Szabó).

This is an effective invariant of Legendrian knots (there is also
a combinatorial version).

Example

For O the unknot above: HFK−(m(O)) = F[U](0), and
L(L) = 1 (i.e. it generates the free part).
For L the trefoil above: HFK−(m(L)) = F[U](+1) ⊕ F(−1), and
L(L) = 1.
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There is a related invariant, L̂(L) ∈ ĤFK (m(L)). ĤFK (m(L))
is a finite-dimensional, graded F-vector space.

Example

For the unknot O, ĤFK (m(O)) = F(0) and L̂(O) 6= 0.

For the trefoil L, ĤFK (m(L)) = F(1) ⊕ F(0) ⊕ F(−1) and

L̂(L) 6= 0 has degree 1.

Theorem (Stipsicz–Vértesi)

There is a “natural” map SFH(−S3
L)→ ĤFK (m(L)) that takes

EH(L) to L̂(L).
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There are two operations on Legendrian knots, called positive
and negative stabilisation.
At the diagram level, one just adds a zig-zag.

+

−

If L± is a ± stabilisation of L, then tb(L±) = tb(L)− 1 and
r(L±) = r(L)∓ 1.
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Rényi Institute

Stein
manifolds and
contact
structures

Legendrian
knots

Floer
homology and
Legendrian
invariants

Stabilisations induce maps σ± : SFH(−S3
L)→ SFH(−S3

L±),
and there are an infinite family of groups Gn = SFH(−S3

L(n))
together with maps σ± : Gn → Gn+1.

Let G (L) = lim−→(Gn, σ−).

Theorem (G.)

• The group G (L) has an action induced by the map σ+.

• ∃Ψ : G (L)→ HFK (m(L)), linear F[U]-isomorphism.

• Ψ([EH(L)]) = L(L).

• L(L) and L(−L) together determine EH(L).
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