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Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 2 / 50



Knots
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Informally, a knot is a piece of closed string in the space.

Definition

A knot is the image of a continuous, injective map S1 → S3 = R3 ∪ {∞}.

Example

The map ιh : θ 7→ (cos θ, sin θ, h) defines a knot for every h ∈ R.

We want to consider all these knots to be equivalent, so we define an
equivalence relation:

Definition

Two knots K0,K1 are said to be isotopic if the corresponding maps ι0, ι1
are isotopic, i.e. there exists a family of continuous, injective maps
φt : S1 → S3 with φi = ιi for i = 0, 1.

Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 4 / 50



Informally, a knot is a piece of closed string in the space.

Definition

A knot is the image of a continuous, injective map S1 → S3 = R3 ∪ {∞}.

Example

The map ιh : θ 7→ (cos θ, sin θ, h) defines a knot for every h ∈ R.

We want to consider all these knots to be equivalent, so we define an
equivalence relation:

Definition

Two knots K0,K1 are said to be isotopic if the corresponding maps ι0, ι1
are isotopic, i.e. there exists a family of continuous, injective maps
φt : S1 → S3 with φi = ιi for i = 0, 1.
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We can represent a (generic) knot with a projection onto the plane,
recording underpasses and overpasses.
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Something’s wrong

Example

More importantly, every knot is isotopic to any other!

Example

Figure: Pictures of the isotopy taken at times t = 0, 1/2, 7/8, 1.
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Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 6 / 50



Fixing the definitions

Definition

A knot K is the image of an embedding S1 ↪→ S3.

We want to consider a stronger equivalence relation on the space of knots,
so as to avoid the squeezing we had before.

Definition

Two knots K 0,K 1 are said to be ambient isotopic if the corresponding
maps ι0, ι1 are isotopic, i.e. there exists a family φt of
self-homeomorphisms of S3 such that φ0 = id and φ1 ◦ ι0 = ι1.

Any knot ambient isotopic to ι : θ 7→ (cos θ, sin θ, 0) is called the unknot.
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Sometimes different diagrams represent the same knot.
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Sometimes different diagrams represent the same knot.

Theorem (Reidemeister, 1926; Alexander-Briggs, 1927)

Two diagrams represent the same knot if and only if one can be obtained
from the other through a finite sequence of the following moves:

This is a very theoretical tool!
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Knot tables

We can list knots, ordering them by the number of crossings of a minimal
projection.

Figure: Pictures taken from KnotInfo

We can list all diagrams (countably many), but we need to make sure we
don’t make repetitions.
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The Perko pair

Figure: Pictures taken from wikipedia.

The two knots 10161 and 10162.
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An knot invariant is a function from the space of knots to some set
(naturals, integers, reals, polynomials) or category (groups, vector spaces,
manifolds, varieties).

Example

The crossing number of a knot K is the minimal number of crossings
in a diagram representing K .

The knot group of K is the fundamental group of the complement
S3 \ K .
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Lemma

Given a knot diagram, one can always switch some crossings to obtain a
diagram of the unknot.

The unknotting number of a knot diagram D is the minimal number of
crossings one needs to switch to obtain the unknot.
The unknotting number of a knot K is the minimal knotting number
among all of the diagrams representing it.

By switching all the crossings of a diagram, one obtains (a diagram for)
the mirror m(K ) of K .
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How to define a “computable” knot invariant:

1 Give a recipe to obtain a number or a polynomial from a diagram.

2 Prove that the recipe gives the same number or polynomial if you
apply a Reidemeister move.

Example

A knot K is 3-colourable if one can label the arcs of a diagram for K with
red, blue and green, such that

At each crossings, one sees either all three colours or only one.

All three colours are used.

Exercise

Prove that this defines an invariant!
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Example

The unknot has a diagram with no crossing and one single arc, so every
colouring (of every diagram representing the unknot) is monochromatic,
i.e. the unknot is not 3-colourable.

Remark

Every knot has 3 monochromatic 3-colourings.

Proposition (Fox, 1956)

The number of 3-colourings is always a power of 3, and is a knot invariant.

Exercise

Prove the proposition above!

Hint: the three colours can be thought of as elements of F3...
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Proposition

The trefoil knot is not the unknot.

Proof.
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The Seifert genus

Theorem (Seifert, 1934)

Every knot K ⊂ S3 bounds an orientable embedded surface.

Sketch of proof.

We orient the knot and resolve its crossings by connecting the ends
matching the orientations.

We obtained a bunch of circles, each of which bounds a disc, and we take
the disc together with all the bands.
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Any surface bounding a knot is called a Seifert surface for the knot.
The genus of a surface S with one boundary component is
g(S) := (1− χ(S))/2.
It is always non-negative: g(S) ≥ 0, with equality if and only if S is a disc.
The genus g(K ) of a knot K is the minimal genus of a Seifert surface
bounding K .

Example

The unknot has genus 0.
The trefoil has genus 1 (Exercise!)

Remark

There are knots for which the minimal genus can’t be attained using the
algorithm above!
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The Alexander polynomial
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Let’s apply the recipe to cook up invariants in a different way.
Take an oriented knot diagram D, and look at a crossing. The crossing
can be positive or negative, according to the right-hand rule. We can
consider two modifications of D:

We switch the crossing from negative to positive or vice-versa.

We resolve the crossing by connecting the ends matching the
orientations.
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We define the Alexander polynomial ∆K (t) ∈ Z
[
t, t−1

]
“recursively”.

Given an oriented diagram D for K , we select a crossing, and we let
D+,D− and D0 be the diagram where that crossing is positive, negative
and resolved respectively.
Then {

∆# = 1

∆D+ −∆D− =
(
t1/2 − t−1/2

)
∆D0

Remark

The definition makes perfect sense for oriented links instead of knots, and
in fact we need to consider multiple components to run the algorithm.

Theorem (Conway, 1969)

Up to multiplication by ±tn, ∆K doesn’t depend on the diagram D.
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Example

We’re going to compute the Alexander polynomial of the right-handed
trefoil T .

D+ (representing T ), D− (representing the unknot) and D0 (representing
the (positive) Hopf link).

∆T = ∆D+ =
(

t1/2 − t−1/2
)

∆D0 + ∆D− =
(

t1/2 − t−1/2
)

∆D0 + 1.
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Example (Continued)

Let’s now compute the Alexander polynomial of the (positive) Hopf link H.

D+ (now representing H), D− (representing the unlink with two
components) and D0 (representing the unknot).

∆H = ∆D+ =
(

t1/2 − t−1/2
)

∆D0 + ∆D− = t1/2 − t−1/2 + ∆D− .
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Example (Continued)

Let’s now compute the Alexander polynomial of the unlink.

D+, D− (both representing the unknot) and D0 (representing the unlink
V ). (

t1/2 − t−1/2
)

∆V =
(

t1/2 − t−1/2
)

∆D0 = ∆D+ −∆D− = 0.
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Example (Continued)

Substituting gives:

∆T =
(

t1/2 − t−1/2
)

∆H + 1 =

=
(

t1/2 − t−1/2
)2

∆# −
(

t1/2 − t−1/2
)

∆V + 1 =

= t − 1 + t−1.

Remark

The idea of skein relations is that one simplifies the knot (either reducing
the number of crossings or the unknotting number or both), and
eventually ends up with a bunch of unknots.
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Properties of ∆

If we plug in t = 1, we obtain ±1: ∆K (1) = ±1.

The Alexander polynomial is symmetric: (up to multiplication by
powers of t)

∆K (t) = ∆K

(
t−1
)
.

Remark

There’s a preferred representative with ∆(t) = ∆
(
t−1
)

and ∆(1) = 1.

The Alexander polynomial doesn’t see mirroring or orientation
reversal:

∆K (t) = ∆m(K)(t) = ∆−K (t).

The maximal difference of the degrees of the Alexander polynomial is
bounded by the genus:

max-deg ∆K −min-deg ∆K ≤ 2g(K ).
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Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 27 / 50



Properties of ∆

If we plug in t = 1, we obtain ±1: ∆K (1) = ±1.

The Alexander polynomial is symmetric: (up to multiplication by
powers of t)

∆K (t) = ∆K

(
t−1
)
.

Remark

There’s a preferred representative with ∆(t) = ∆
(
t−1
)

and ∆(1) = 1.

The Alexander polynomial doesn’t see mirroring or orientation
reversal:

∆K (t) = ∆m(K)(t) = ∆−K (t).

The maximal difference of the degrees of the Alexander polynomial is
bounded by the genus:

max-deg ∆K −min-deg ∆K ≤ 2g(K ).
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From polynomials to vector spaces
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Motivation

Consider a finite simplicial complex X (triangulated topological space).
We have the Euler characteristic

χ(X ) =
∑
k≥0

(−1)k#{k-simplices in X},

that is an invariant for X (up to homotopy equivalence).

We can form the vector space Ck(X ) generated over F = F2 by the
k-simplices of X , and define C∗(X ) =

⊕
k Ck(X ).

C∗(X ) is not an invariant of X up to homeomorphism, but the alternating
sum of dimensions is!
Can we make into an invariant?
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Motivation (continued)

Define a boundary map d : Ck(X )→ Ck−1(X ) such that d2 = d ◦ d = 0.
Let

Hk(X ) :=
ker (d : Ck(X )→ Ck−1(X ))

im (d : Ck+1(X )→ Ck(X ))

H∗(X ) is an invariant of X , called simplicial homology.

Exercise

Prove that

χ(H∗(X )) :=
∑
k

(−1)k dim Hk(X ) =
∑
k

(−1)k dim Ck(X ) = χ(X ).

We say that “simplicial homology categorifies the Euler characteristic”.
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Motivation (continued)

To each simplicial map f : X → Y between simplicial complexes, we
associate a map

f∗ : H∗(X )→ H∗(Y ).

If f and g are two homotopy equivalent simplicial maps from X to Y , then
f∗ = g∗.
Homology is a functor from the category of triangulable topological spaces
to graded vector spaces!

Remark

By making the theory more complicated (from integers to vector spaces)
we gain more information.
Moreover, if X has more structure, there are distinguished elements in
H∗(X ) that χ can’t see.
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What if we wanted to categorify a polynomial in Z
[
t, t−1

]
?

For each degree j of the variable t we have an integer aj (i.e. the
coefficient of t j), so for each j we want a graded vector space V∗,j(X ) so
that χ(V∗,j(X )) = aj .
That is, we want to find a bigraded vector space

V∗,∗(X ) =
⊕
i ,j∈Z

Vi ,j ,

and we define the (bigraded) Euler characteristic of V :

χ(V ) =
∑
j∈Z

(∑
i∈Z

(−1)i dim Vi ,j

)
t j ∈ Z

[
t, t−1

]
.

Remark

The i-degree doesn’t need to be a Z grading, but in fact a Z/2Z grading
is enough.
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Guiding principle

diagrams : knots = simplicial complexes : (triangulable) topological spaces

To cook up an invariant:

1 associate to each knot diagram D a bigraded vector space V (D);

2 define a boundary ∂ : V (D)→ V (D);

3 take ker ∂/ im ∂, and hope that it’s invariant under Reidemeister
moves.
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Kauffman states
Consider the regions in which a knot diagram divides the plane.
Declare the “external” region and one adjecent to (i.e. across an edge
from) it to be forbidden.

Definition

A Kauffman state is any choice of a bijection between the crossings of the
diagram and the allowed regions.

Example

The three states for the standard diagram for the trefoil.
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We want to assign two gradings to each state, according to the following
rules:

-1/2 1/2

-1/21/2

0 0 0 0

1

0

0 0

-1

0

0 0

On the top row, the Alexander grading, on the bottom row the
Maslov grading.
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Example (continued)

The corresponding values of (A,M): (1, 0), (0,−1), (−1,−2).

Theorem (Kauffman, 1983)

The weighted count∑
i ,j

(−1)i#{states of bidegree (i , j)} · t j

is equal to the Alexander polynomial ∆K (t)
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We consider the free vector space CFK (D) generated by the Kauffman
states of the diagram D.
CFK (D) is now a bigraded vector space.

Example (continued)

In the example above, we had three generators in bidegrees (1, 0), (0, 1)
and (−1, 0).
In this case CFK (D) = F(1,0) ⊕ F(0,1) ⊕ F(−1,0).

Notice that

χ(CFK (D)) = (−1)0t1 + (−1)1t0 + (−1)0t−1 = ∆T .
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Remark

CFK (D) is not an invariant of the knot K associated to D.

But we can define an endomorphism ∂ : CFK (D)→ CFK (D) that
preserves the Alexander grading A, drops the Maslov grading M by 1 and
satisfies ∂2 = 0, such that

HFK (K ) :=
ker ∂ : CFK (D)→ CFK (D)

im ∂ : CFK (D)→ CFK (D)

is an invariant of K .

Theorem (Ozsváth-Szabó, 2002)

HFK (K ) is an invariant of K that categorifies the Alexander polynomial,
that is

χ(HFK (K )) = ∆K (t).
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Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 38 / 50



Remark

We have that dim HFK (K ) is bounded from below by the sum of the
absolute values of the Alexander polynomial.

Example (continued)

In the example above, we had a complex with 3 generators, and we knew
that its homology had to be of dimension at least 3.
So in this case ∂ = 0 and HFK (T ) ' CFK (D).

Theorem (Ozsváth-Szabó, 2003)

There’s a large class of knots for which knowing the Alexander polynomial
(plus the signature of the knot) is equivalent to knowing knot Floer
homology. These are called alternating.
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Example

Let’s consider the figure eight knot F 8. The states for the 4-crossing
diagram are:

With bigradings (A,M): (−1,−1), (0, 0), (1, 1), (0, 0) and (0, 0).
In particular, the differential has to be trivial for degree reasons!
It follows that HFK (F 8) = F(1,1) ⊕ F3

(0,0) ⊕ F(−1,−1), and

∆F8 = −t + 3− t−1.
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Properties of HFK

Up to shifts, HFK is symmetric:

HFKM,A(K ) = HFKM−2A,−A(K ).

HFK sees mirrors only through the bigrading:

HFKM,A(m(K )) = HFK2A−M,A(K ).

HFK detects the genus:

max{A | HFK∗,A(K ) 6= 0} = g(K ).

By symmetry, one can take −min instead of max.

Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 41 / 50



Properties of HFK

Up to shifts, HFK is symmetric:

HFKM,A(K ) = HFKM−2A,−A(K ).

HFK sees mirrors only through the bigrading:

HFKM,A(m(K )) = HFK2A−M,A(K ).

HFK detects the genus:

max{A | HFK∗,A(K ) 6= 0} = g(K ).

By symmetry, one can take −min instead of max.
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Marco Golla (Rényi Institute) Knots, polynomials, and categorification 2013/03/25 41 / 50



Something’s missing.

In the case of simplicial homology, we had defined a map on the homology
of two spaces, given a continuous map between them.

Fill the gap

simplicial complex : continuous map = knot : ???

Definition

A knot cobordism between K0 and K1 is an embedding of a surface F in
the cylinder S3 × [0, 1] such that ∂F is mapped onto K0 × {0} ∪K1 × {1}.
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A knot cobordism is not a map, but we can nevertheless compose two
cobordisms, provided their sources/targets match, and composition is
associative.

Remark

Knots together with knot cobordisms form a category.

The gap is filled

simplicial complex : continuous map = knot : knot cobordism

Question

Can we associate to a knot cobordisms C between K0 and K1 a linear map

FC : HFK (K0)→ HFK (K1),

so that associativity is respected?
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Trivially, yes: if we let FC = 0 for every C , then associativity holds.

We want one more property: the trivial cobordism

K × [0, 1] ⊂ S3 × [0, 1]

is a two-sided identity with respect to the composition of cobordisms, and
it should induce the identity map

id : HFK (K )→ HFK (K )

Theorem (Juhász, 2010; Sahamie, 2011)

To every knot cobordism C between K0 and K1 one can associate a linear
map

FC : HFK (K0)→ HFK (K1)

in a functorial way.
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The Jones polynomial

As before, consider D+, D− and D0, three diagrams differing only at a
crossing.
The skein relation defining the Jones polynomial VL(q) ∈ Z

[
q, q−1

]
is:{

V# = 1

q−1VL+ − qVL− =
(
q1/2 − q−1/2

)
VL0 .

Theorem (Jones, 1985)

The skein relation above defines an isotopy invariant of oriented links, with
values in Z

[
q1/2, q−1/2

]
.

Exercise

Compute the Jones polynomial of the trefoil, as we did before.
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Properties of VK

The Jones polynomial doesn’t see (global) orientation reversals:

V−K (q) = VK (q).

The Jones polynomial can see mirroring:

Vm(K)(q) = VK

(
q−1

)
.

The Jones polynomial sees the number of 3-colourings:

c3(K ) = 3
∣∣∣VK

(
e i2π/6

)∣∣∣2 .
Conjecture

VK = 1 if and only if K is the unknot.
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State-sums
We consider the two (unoriented) resolutions of a diagram:

Call D, D0 and D∞ the three diagrams above. The skein relation defining
the Kauffman bracket is:{

〈D〉 = A〈D0〉+ A−1〈D∞〉
〈
∐n #〉 =

(
−A2 − A−2

)n−1

Theorem (Kauffman, 1987)

The Jones polynomial and the Kauffman bracket are related by:

VK (q) =
(

(−A)−3 wr D〈D〉(A)
) ∣∣∣A=q−1/4 ∈ Z

[
q, q−1

]
.
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Example

Starting with the right-handed trefoil T = we get the following

resolution cube:

??
??

??
?

??
??

??
?�������

??
??

??
?

�������

??
??

??
? �������

�������

Each diagram counts as
(
−A2 − A−2

)# circles−1
, weighted some power of

q (depending on the column it lies in). Let C = −A2 − A−2.

VT (q) = −A9
(
A3C 2 + 3AC + 3A−1 + A−3C

)
=

= −q−4 + q−3 + q−1.
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Example (continued)

Since VT (q) is not symmetric (i.e. VT (q) 6= VT

(
q−1

)
), we proved that

the right-handed trefoil T and the left-handed trefoil m(T ) are not
ambient isotopic!

We can also check that the formula for the number of 3-colourings holds:

VT

(
e2πi/6

)
= −e8πi/6 + e6πi/6 + e2πi/6 =

= 2e2πi/6 − 1 = i
√

3,

so that

c3(K ) = 3
∣∣∣i√3

∣∣∣2 = 9,

and this is in fact the case (3 trivial colourings and 6 nontrivial ones).
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