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Abstract—Wi-Fi based localization enables detection of users’
position in indoor spaces by means of wireless networking
infrastructure. The positive aspects of this solution include the
reuse of already deployed systems and thus its reduced costs. On
the negative side, Wi-Fi based localization is not particularly
accurate, because the common operating conditions are far
from the ideal ones. We propose to use external constraints
for improving the accuracy of Wi-Fi based localization. A set
of known schedules is used to restrict the estimated position
of the user to a single room. The schedule for a given user is
automatically selected from a set of possible ones by observing
user’s movements with coarse-grained resolution.
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I. INTRODUCTION

Indoor localization of users within large buildings has been

an active research area for the last decade. In fact, knowing

the position of users in indoor spaces enables a wide range

of applications, like providing navigation towards a given

target or sending suggestions/advertisements based on users’

positions [1]. In general, position is considered one of the

key elements of context as it provides information useful to

deliver customized services and to infer other properties of the

environment where applications are executed. More recently,

indoor localization started being considered as a fundamental

component of smart building solutions. If users’ positions are

known, it is possible to tune heating and conditioning systems

based on the occupancy levels, thus saving energy. Indeed, for

instance, it is useless to heat a room that is not currently in use;

on the other hand, crowded areas have to be conditioned more

intensively to maintain the temperature within the comfort

zone.

The majority of indoor localization solutions proposed so

far are smartphone-based and rely on Wi-Fi: the smartphone

operates as a sensing and computing element, whereas visible

access points (APs) can be used to determine the position of

the user [2]. In some cases the signal strength of APs in the

nearby is used to increase localization accuracy [3], [4]. Other

solutions integrate Wi-Fi based information together with data

collected by means of other sensors commonly available on

smartphones. For example, some systems use the barometer

to detect floor changes [5]. Others implement dead-reckoning

mechanisms using the accelerometer and/or gyroscope [6], [7],

[8], [9]. Many Wi-Fi based localization solutions require a

preliminary setup phase: the wireless fingerprint of the con-

sidered building is collected and stored within a database; then,

in the operational phase, the wireless properties observed by a

user are compared to stored information for computing his/her

position. Unfortunately, this approach is rather expensive as

fingerprinting is labor intensive and must be repeated periodi-

cally to detect possible changes in the infrastructure. Moreover

the wireless fingerprint is influenced by the presence/absence

of crowds, thus capturing all the details is almost impossible.

Several Wi-Fi based localization systems operate according

to a simplified model of the environment. For example, one

of the APs within the communication range of the user’s

smartphone is selected as reference using some criteria (such

as the AP with strongest signal) and the user is then co-

located with the reference AP. In other cases, there is a

one-to-one mapping between APs and rooms: the AP that

provides the strongest signal in a given room is associated

to that room. Subsequently, when a user is connected to

an AP, then the associated room is inferred as the user’s

location. On the negative side, these assumptions make the

localization system prone to errors. We observed that a single

AP can be able to cover a relatively large number of rooms,

thus one-to-one mapping cannot be considered as a viable

option. In particular, in our experimental analysis we found

that the signals of several APs get received in 10-20 rooms

(this obviously depends on the structure and topology of the

considered building).

In this paper we propose the use of external constraints

for removing localization ambiguities. Our technique relies

on the presence of a well-known schedule about the possible

movements of users within a building (or a set of buildings)

to determine the room where a user is located. In detail,

our reference scenario is an academic campus where students

move from one classroom to another for attending lectures.

The schedule of lectures is known and can be used to remove

localization ambiguities of a Wi-Fi based system. The output

of the localization system could be used to efficiently tune

the conditioning system or to understand the real occupancy

levels of rooms. We believe that the proposed approach, with

some marginal changes, can be applied in a number of other

scenarios, e.g. in a hospital where personnel and patients move

according to a schedule that can be derived from the medical

information system.

The remaining of this paper is organized as follows: in

Section II the most relevant work related to indoor localization

in smart building solutions and constraint-based localization is

summarized; in Section III the principle of operation and the

main steps of the proposed technique are described; Section IV

illustrates a case study where the method has been tested;



conclusions are drawn in Section V.

II. RELATED WORK

Heating, ventilaton, and air conditioning (HVAC) systems

are responsible for a large fraction of the energy consumption

in commercial and residential buildings. Reports highlight

that commercial buildings, which account for approximately

20% of USA global energy demands, could significantly

reduce their footprint through adoption of power-saving strate-

gies [10], [11]. In [12], the relation between building occu-

pancy in the MIT campus, estimated by counting the number

of accesses to Wi-Fi networks, and energy demand is studied.

This information is then used to tune the HVAC system

according to the number of users in the monitored spaces.

Detailed information about the number of occupants in a room

can also be used, according to the authors, to “weight” the

thermostat demand, allowing larger groups of people to change

the room temperature with greater control with respect to small

groups.

Sentinel is a system for HVAC actuation based on oc-

cupancy information collected via existing Wi-Fi infrastruc-

ture [13]. Authentication logs of users’ smartphones are used

to coarsely localize them within the considered buildings. As

highlighted, a single AP generally covers an area that includes

several rooms and/or offices, thus it is difficult to understand

which is the actual location of the user. In Sentinel some

spaces are marked as “personal” (e.g. an office), whereas the

remaining spaces are tagged as “shared”. This external infor-

mation is used to increase localization accuracy: a personal

space cannot be occupied unless the owner is present in the

space; similarly, whenever a user is detected by an AP that

covers the user’s personal space, then the user is supposed to

be located in his/her personal space. The authors demonstrate

that large energy savings can be achieved by using occupancy

information, even in the presence of some inaccuracies.

The use of constraints to increase the accuracy of Wi-Fi

based localization has been discussed also in [14]. In particu-

lar, the trajectory of the user in an urban area is estimated using

a number of passive Wi-Fi monitors, and taking into account

the constraints introduced by road segments, intersections, and

buildings. The method is inspired by Viterbi map-matching

techniques, which are used to find the maximum probability

path as a sequence of hidden states in the corresponding

Markov model.

In [15], a method for extracting knowledge from a large

Wi-Fi monitoring experiment is presented. The aim of the

described system is to provide information that can be useful

for managing large buildings, such as the position of users, and

density and flow of crowds. The analysis is contextualized in

a large hospital complex composed by 22 buildings. As far as

localization is concerned, the proposed approach estimates the

position of users using the centroid lateration algorithm; then

the estimated position is snapped to the location of the nearest

AP. Interestingly, the authors also classify users in a number

of behavioral roles that are relevant to the considered scenario

(patients, employees, visitors) using features extracted from

Wi-Fi traces. This is somehow the converse of our procedure:

Fig. 1: Example of map

we use external constraints, inferred from the classification of

users, to restrict the uncertainty level of localization. Also in

our case the classification of users is dynamical.

ARIEL is a Wi-Fi based localization system that operates at

room level [16]. Room fingerprints are automatically learned

based on occupants’ indoor movements. The accelerometers

commonly available on smartphones are used to detect users’

motion (sampling at low frequency to reduce the consumption

of energy). Wi-Fi signals collected in stationary sessions are

then aggregated using a zone-based clustering technique.

The problem of indoor localization with room-level gran-

ularity has been studied also in [17], where received signal

strength of visible APs is used. The system requires a training

phase to collect the Wi-Fi fingerprints of considered spaces.

To reduce the effort, also the training phase is organized with

room-level granularity and does not require operators to move

according to a grid (as done in other systems).

III. METHOD

In this paper the use of external constraints for improving

Wi-Fi based localization is proposed. In particular, a set of

constraints derived from a well-known schedule is used to

restrict the position of the user, roughly calculated from Wi-

Fi infrastructure, to a single room.

The proposed method assumes that the users within a

building (or a set of buildings) move according to a well-

known schedule (as it happens with the employee of a hospital

or the students in campuses). The identity of single users is

not known, thus it is not possible to directly infer from Wi-Fi

data the schedule for the currently observed user. According

to the proposed method, first a possible schedule for a given

user is selected by observing his/her movements, then such

schedule is used to restrict the position of the user to a single

room from a set of possible rooms.

A. Principle of operation

The use of Wi-Fi as mechanism for locating users in indoor

environments has been extensively studied during the last years

as a low-cost solution, since Wi-Fi infrastructure is already

available in almost all buildings and thus there is no need to

deploy additional equipment.

The strawman approach, for Wi-Fi based localization, can

be described as follows. Initially, a Wi-Fi map of the envi-

ronment is created off-line. Such map reports the visible APs



for a number of sampled positions (sampling can be carried

out with different granularity levels, depending on the required

precision and the effort that can be allocated for creating the

map). The minimum effort is achieved by collecting a single

sample for every room of the building: in such case the map

basically reduces to a list of visible APs for every room. Then,

when the system is operational, localization of a given user

takes place by comparing the list of APs in proximity of

the user to information contained in the map. In particular,

the user could be located in one of the previously sampled

positions where currently visible APs have been reported. If

the map has room-level granularity, the result is the set P of

possible rooms that are compatible with the APs surrounding

the user. For example, let us consider the scenario depicted in

Figure 1: if the user is within communication range of AP2

and AP3, then such user could be located either in room C or

D (P = {C,D}); if the only visible AP is AP1, then the user

could be located in room A, B, or C (P = {A,B,C}).
Obviously, the smaller the cardinality (|P |) of the set of

possible rooms is, the better the localization accuracy is.

Unfortunately, in some circumstances, this set can be quite

large: we experimentally verified that a single AP can cover

more than 20 rooms (this clearly depends on building struc-

ture, layout, Wi-Fi technology, etc.). As a consequence, the

localization accuracy of an approach like the one described

above can be quite unsatisfactory.

We devised a technique that is able to reduce the ambiguity

of the strawman approach by including external constraints in

the localization process. In particular, the technique excludes

from the set of possible rooms those rooms that are not

compatible with the schedule of the user at a given time. The

schedule of the user is automatically learned by observing

his/her movements during a period of time. Let P1, P2, ..., Pn

the sets of possible rooms computed at different times, and

let S = {s1, s2, ..., sm} be the set of known schedules. Each

schedule sl defines the position of users who follow such

schedule as a list of time intervals and associated rooms.

The inferred user’s schedule ŝ, with ŝ ∈ S, is computed by

selecting the “best match” as follows:

ŝ = argmin
sl∈S

dist(sl, [P1, ..., Pn])

where dist is a distance function (more details are provided

in the following). The automatically learned schedule is then

used to remove from P those elements that are not in ŝ at that

time.

These principles of operation have been contextualized for

an academic scenario: users are students frequenting the build-

ings of a University campus for attending lectures according

to a well-known schedule.

B. Creating the map

The AP map is created by moving across all the rooms of

the considered buildings and registering the set of visible APs

for every room. Results are then sent to a remote server where

they are stored on persistent memory.

During scanning the following information is collected: i)

BSSID: each Basic Service Set is identified by a Basic Service

Fig. 2: Multiple SSIDs

Set ID (BSSID) which is derived from the MAC address of the

AP; ii) ESSID: the Extended Service Set IDentifier (ESSID)

is a human-readable string that differentiates one WLAN from

another. ESSID is essentially a name that identifies a wireless

network. Using multiple ESSIDs allows users to access dif-

ferent networks through a single access point (Figure 2). The

ESSIDs are sent in broadcast for advertising the presence of

APs to the users.

ESSID is used to discard APs that do not belong to the

academic/enterprise network to be mapped (APs located in

close buildings are sometimes visible and have to be ignored).

BSSIDs are used to identify single APs (adjacent BSSIDs are

managed by a single AP and are coalesced into a single AP

identifier). Collected data is processed to obtain the set of APs

that are visible from every room; dual information, i.e. the set

of rooms covered by every AP, is also determined.

Creating a map is always a cumbersome process. However

the approach here proposed requires a reduced effort, as it

needs a single sample per room. Moreover the map does not

register signal strength information, which is more likely to

change in presence of crowds than mere visibility of APs.

C. Processing user traces

A raw user trace is a sequence of samples collected with

period T . Each sample consists of the set of BSSIDs visible

at that time. Such traces are first processed to convert BSSIDs

into AP identifiers using the AP map data structure. The result

is a time-annotated sequence of AP sets:

u = At1 , At2 , ..., Atn

where At is the set of AP visible at time t (At ⊆ I , where

I is the set of all APs). Trace u is then filtered using a time

window to remove those APs that appear rarely (e.g. those

collected during movements from a room to another room).

Let W be the size of the time window, and let wi be the time

interval that goes from W · (i− 1) to W · i. The filtered trace

is

û = Âw1
, Âw2

, ..., Âwk

where a ∈ Âwi
if a ∈

⋃
At with t ∈ wi and the number

of occurrences of a in wi is greater than a given threshold

q. Finally, a room-based trace ū is generated from û by

converting AP identifiers in room identifiers:

ū = Pw1
, Pw2

, ..., Pwk

where Pwi
is the set of rooms for the i-th time window (p ∈

Pwi
if p is covered by a with a ∈ Awi

).



Finally, ū is compared with known schedules by computing

a distance function. Then the schedule with the smallest

distance is selected and used to restrict the position of the

user.

D. Computing the distance with schedules

Each schedule is basically a list of rooms where the user is

supposed to be if he/she follows that schedule. For each room

the time interval is also specified. A schedule sl is defined as:

sl = rt′1,t′′1 , rt′2,t′′2 , ..., rt′m,t′′m

where rt′j ,t′′j is a room identifier and t′j , t
′′
j is the j-th time

interval (from t′j to t′′j). To compare schedules with user

traces, the former are converted using time windows having

the same size of the latter ones. This conversion can be easily

performed selecting W as a submultiple of the typical time

interval (t′j , t′′j).

Thus, obtained schedules can be expressed as

s̄l = rw1
, rw2

, ..., rwm
.

Distance d between ū and s̄l is computed as follows:

d← 0
for i← 1 to k do

x← rwi

if x /∈ Pwi
then

d← d+ 1
end if

end for

Distance is calculated for all known schedules (∀sl), then

the schedule with the smallest value of distance is selected. k
defines the amount of time the user is under observation, with

k ≤ m. In practice, the value of k can be determined as the

smallest value that makes a schedule clearly distinguishable

from the others.

It is worthwhile to notice that according to the proposed

method the set of possible rooms is determined as the union of

the sets of rooms covered by all visible APs. This is somehow

counterintuitive: if the user is within the communication range

of a set of APs, then he/she should be reasonably located in a

room that belongs to the intersection set. Nevertheless, from

preliminary experiments, we observed that the use of intersec-

tion makes the method scarcely tolerant to differences between

coverage information acquired when the map is created and

coverage information registered during the operational phase.

In other words, the use of union makes the method more robust

to possible inaccuracies in map data and interferences.

IV. A CASE STUDY

A preliminary evaluation has been carried out in a real

environment.

A. Operational scenario

A Wi-Fi coverage map of the campus of the Faculty of

Engineering, University of Pisa, has been collected. The map

includes four buildings, named A, B, C, and F, as shown

Fig. 3: The four buildings considered (campus of the Faculty of

Engineering, University of Pisa, image data c© OpenStreetMap

contributors).

 0

 5

 10

 15

 20

 25

 30

A
P

0
0

A
P

0
1

A
P

0
5

A
P

0
6

A
P

0
7

A
P

1
9

A
P

2
6

A
P

2
7

A
P

3
0

A
P

3
1

A
P

3
2

A
P

3
4

A
P

3
7

A
P

3
8

A
P

3
9

A
P

4
3

A
P

4
8

A
P

6
1

A
P

0
2

A
P

4
2

A
P

4
4

A
P

4
1

A
P

4
5

A
P

4
7

A
P

5
0

A
P

5
8

A
P

1
5

A
P

2
5

A
P

2
9

A
P

3
3

A
P

4
0

A
P

4
6

A
P

5
2

A
P

5
4

A
P

5
6

A
P

6
4

A
P

6
5

A
P

0
3

A
P

1
8

A
P

4
9

A
P

5
1

A
P

6
0

A
P

0
9

A
P

1
0

A
P

2
1

A
P

2
3

A
P

3
5

A
P

3
6

A
P

5
3

A
P

5
5

A
P

2
2

A
P

2
4

A
P

2
8

A
P

5
9

A
P

6
3

A
P

1
3

A
P

2
0

A
P

5
7

A
P

6
2

A
P

1
2

A
P

1
6

A
P

0
8

A
P

1
1

A
P

1
7

A
P

0
4

A
P

1
4

N
u

m
b

e
r 

o
f 

ro
o

m
s

Access Point ID

Fig. 4: Number of rooms covered by APs

in Figure 3. Such buildings host approximately 10000 stu-

dents and 400+ members of the academic, technical, and

administrative staffs. The buildings include several large rooms

(auditoriums with 300 seats) and many medium and small

classrooms, as well as many small offices.

B. Statistics

The four buildings are equipped with 65 APs. The number

of rooms is equal to 48, which can be divided in 41 classrooms

and 7 “spaces” dedicated to other activities. The map has

been analyzed to better understand the operational scenario.

In particular, we focused on the relationship between the

coverage area of APs and rooms, as it directly affects the

localization ambiguity when using the strawman approach.

First, we analyzed how many rooms are in each AP coverage

area. Figure 4 shows that over 33% of APs in our scenario

cover more than five rooms. Then we investigated how many

APs are visible from each room. Figure 5 shows that for all the

rooms in the considered buildings at least two distinct access

points are visible. The same information is aggregated and

shown in Figure 6, in terms of frequency (number of rooms

where the amount of visible APs is the one specified by the

abscissas). Complete coverage information for the considered

area is available in Appendix.

In this scenario we observe that some APs that are located

in a building are visible in other buildings as well. This

would make even more ineffective a method like the strawman

approach, since not even the exact localization of a user, at

building level, would be feasible.
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Fig. 5: Number of APs visible from every room
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C. Results

Ten traces, corresponding to ten users moving in the con-

sidered area, have been collected approximately from 8am to

7pm. Such students attend ten different undergraduate/graduate

courses and thus they have different schedules.

Table I reports the minimum, maximum, and average value

of |P | for the considered students. Global values for the ten

users are also reported. Note that the registered values are

rather large and this means that the ambiguity of the strawman

approach is considerable. For this analysis raw user traces have

been collected with 1 minute period, the value of q and W
have been set to 15 and 1 hour respectively.

The proposed method is successful if the schedule with

smallest distance is the real schedule of the users and all the

other schedules have larger distance values (to make the real

schedule distinguishable from the others).

For the ten considered users, in 90% of cases identification

of user’s schedule is successful and the position of the user

can be restricted to a single room. In one case the method

has not been able to uniquely identify the schedule of the

user: despite the distance for the real schedule of the user

is zero, there are two other schedules with the same distance.

Results are shown in Table II. The first column reports the real

schedule identifier for the ten users. The other columns contain

the identifiers of the schedules with the smallest distances (in

order of increasing distance). It can be noticed that for s3 there

are three schedules (s3, s11, s12) with a distance value equal

to zero.

TABLE I: Cardinality of the set of possible rooms for ten users

User ID Min Max Avg

1 12 33 27.2

2 37 37 37.0

3 12 25 19.8

4 7 24 13.8

5 33 33 33.0

6 33 39 34.7

7 33 33 33.0

8 37 39 37.8

9 37 37 37.0

10 9 39 32.1

Global 7 39 30.54

TABLE II: Results of the application of the proposed method

on ten users

Schedule Distances

s1 s1 0 s45, s46 1 s13, s14, s15 2

s2 s2 0 s16, s17, s18, s19 2 s4 3

s3 s3, s11, s12 0 s22,s23,s24 1 s34, s46 3

s4 s4 0 s22,s25,s26,s27,s28 1 s45, s47, s48 2

s5 s5 0 s29, s45 2 s30, s31 3

s6 s6 0 s33, s34 2 s16, s35, s2 3

s7 s7 0 s36 1 s18, s19, s37, 46 2

s8 s8 0 s12 2 s38 3

s9 s9 0 s14, s37 3 s29, s41, s42 4

s10 s10 0 s24, s43 3 s14, s23, s44 5

In general, a user can be observed until his/her schedule

becomes clearly distinguishable from the others. Conversely,

the observation period can be stopped as soon as a clear

schedule emerges from the user’s coarse-grained trajectory. For

the ten considered users the observation period was fixed and

equal to one working day, and this amount of time has been

sufficient to successfully infer their schedule in 90% cases.

To operate properly the method should avoid generating

“false positives”: users who move without following a pattern

should not be recognized as belonging to any schedule. We

performed a preliminary analysis by collecting ten traces of

users who move according to a randomly generated pattern,

then we calculated the minimum distance of these traces with

respect to the known schedules. Each trace is 8 hour long

and users remain in rooms using the same time window of

the schedules (W ). This makes random traces similar to those

produced by users following schedules (to test the method

in the worst conditions). On average, the minimum distance

between random traces and the closest schedule is ∼ 3. Thus,

considering that for users following schedules such value is

always zero, we can reasonably state that the two classes can

be distinguished by means of a threshold.



V. CONCLUSION

Indoor localization of users enables a wide range of applica-

tions in smart-building scenarios, from tuning HVAC systems

to analyzing the real occupancy level of spaces. In this paper

the use of external constraints is used to reduce the ambiguity

of a Wi-Fi based localization system to a single room. The

schedule of users is automatically learned by observing their

movements with coarse-grained resolution. Experimental re-

sults, obtained in a real academic campus, demonstrate that

observing users in this way provides sufficient information to

successfully recognize their schedule.

We believe that the proposed techniques can be successfully

applied also in other scenarios characterized by large com-

plexes and external constraints. An example is represented by

hospitals, such as the one described in [15], where working

shifts are used in the analysis of collected Wi-Fi traces.
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APPENDIX

Table III reports the set of rooms where each AP is visible.

The first letter of room identifiers indicates the building where

that room is located. Some APs are visible across different

buildings, as for instance AP13 or AP16.

TABLE III: Coverage AP-room matrix: for every AP, the set

of rooms where such AP is visible is indicated with a larger

dot
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0
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F
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F
0
8

F
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AP00 - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP01 - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP02 - - - - - - - - - - - - - - - - - - - - - - • • - - - - - - - - - - - - - - - - - - - - - - - - -

AP03 - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • • - - - - - - - - - - - - - - - - -

AP04 - - - - - - - - - - • - • - • • • • • • • • - • - - • • • • • • - - - • - • • - - - - • - - - - -

AP05 - - - - - - - - - - - - - - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP06 - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP07 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - - - - -

AP08 - - - - - - - - - - • • - • • • • - • • • • • - • • - - - - - - - - - - - - - - - - - - - - - - -

AP09 • • - - - - - • - - - - - - • - - - - - - • - - • - - - - - - - - - - - - - - - - - - - - - - - -

AP10 - • • - - - • • • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP11 - - - - - - - - - - • - - • • • - - • • • • • • • • • - - - - - - - - - - - - - - - - - - - - - -

AP12 - - - - - - - - - - - - - - • - - - • - • • - - - - - • • • • • • - - - - - - - - - - - - - - - -

AP13 - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • • • • • - - - - - - - - - - - - - -

AP14 - - - - - • • - - - • - - • • • - • • • • • - • • • • • • • • • • • • • • • • • - - - - - - - - -

AP15 - • • - - - - - • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP16 - - - - - - - - - - - - - - - - - - - • - - - • - - - - • • • • • • • • - - • - - - - - - - - - -

AP17 - - - - - - - - - - • - - - • - - - • • • • - • • - - - • • • - • • • • • • • - - - - - - - - - -

AP18 - - - - • • • • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP19 - - - - - - - - - - - - - - - - - - - - - - - - - - - • - - - - - - - - - - - - - - - - - - - - -

AP20 - - - - - - - - - - - - - - • • - - - • - • • - • • • - - - - - - - - - - - - - - - - - - - - - -

AP21 - - - - - - - - - - • • • • - - - - • - - • - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP22 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • - • • • • - - • - - - - - - -

AP23 - - - - • • • - - - - - - - - - - - - - - - - • - - • - - - - - - - - - • - - - - - - - - - - - -

AP24 - - - - - - - - - - • - • • - - • • - • - - - • - - - - - - - - - - - - - - - - - - - - - - - - -

AP25 - • • - - - - - • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP26 - - - - - - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP27 - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP28 - - - - - - - - - - - - - - - - • • - - - - - - - - - • • - - - • • - • - - - - - - - - - - - - -

AP29 - - - - - - - - - - - - - - - - • • - - - - - • - - - - - - • - - - - - - - - - - - - - - - - - -

AP30 - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • -

AP32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • -

AP33 - • • - - - - - • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP34 - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP35 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • • •

AP36 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • • •

AP37 - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP38 - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP39 - - - - - - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP40 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • - - - - - -

AP41 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • - - - - - - -

AP42 • • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP43 • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP44 - - - - - - - - - - - - - - - - - - - • - - • - - - - - - - - - - - - - - - - - - - - - - - - - -

AP45 - - - - - - - - - - - - - - - - - - - • - - • • - - - - - - - - - - - - - - - - - - - - - - - - -

AP46 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • •

AP47 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • •

AP48 - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP49 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • • - - - - -

AP50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • - • - - - - -

AP51 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • - • - -

AP52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • - - - -

AP53 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • - • • • • - - -

AP54 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • - • • - - - - -

AP55 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • • •

AP56 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • •

AP57 - - - - - - - - - - • • • • - - • - - • - - • - - - • - - - - - - - - - - - - - - - - - - - - - -

AP58 - - - - - - - - - - • - • - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP59 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • • • - •

AP60 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • - •

AP61 - - - - • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

AP62 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • • • • • • •

AP63 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - • - • • • • •

AP64 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • - - - - -

AP65 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • • • - - - - -


