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Abstract—Knowing the position of an Internet host enables
location-aware applications and services, such as restriction of
content based on user’s position or customized advertising. Active
IP geolocation techniques estimate the position of an Internet
host using measurements of the end-to-end delay between the
target and a number of landmarks (hosts whose positions are
known in advance). We present an IP geolocation method that
operates in a crowdsourcing perspective and uses mobile devices
as landmarks, since their position can be easily computed using
the GPS unit. A specific calibration has been included to take into
account the particular operating environment which, differently
from the past, includes the presence of wireless links.

I. INTRODUCTION

Knowing the position of an Internet host can be useful in

several applications and services. Examples include the dis-

tribution of content based on user’s location, authorization of

transactions only when user’s position corresponds to trusted

areas, or the analysis of the Internet along a geographical di-

mension. As known, there is no direct relationship between an

IP address and the position of the host with such address [1].

Some databases provide a mapping between hosts and their

believed coordinates. Unfortunately, geographic data stored in

these databases is not particularly accurate [2], since the posi-

tion of a host is determined using administrative information.

As a consequence, when organizations are particularly large,

the error between the estimated and the real position can be

in the order of thousands of kilometers [3], [4].

Active IP geolocation techniques determine the position of

an Internet host via network measurements. In general, the

basic idea is to find the distance between the host to be

localized and a number of landmarks (a set of hosts whose

position is known in advance), then trilateration (or another

geometrical technique) is applied. The distance between the

target and a given landmark is estimated using end-to-end

delay measurements. Thus, landmarks actively send probes

towards the target host to measure the delay; delays are

converted into distances according to a delay-distance model;

finally results are collected on a central server where the

position is calculated.

We devised an active IP geolocation method that uses

smartphones as landmarks. The proposed method is based on

crowdsourcing principles: a number of users participate vol-

untarily to the system and provide their devices as measuring

elements [5], [6].

With respect to existing literature, this work contributes

as follows: i) for the first time the use of mobile devices,

whose position is known thanks to their GPS receiver, is

considered to determine the location of an Internet host; ii) the

localization procedure is calibrated according to the particular

operating conditions of mobile devices that, differently from

previous studies, are connected to the Internet via wireless

links (cellular and Wi-Fi); iii) landmarks do not belong to re-

search/academic networks and are enrolled via crowdsourcing.

The paper is organized as follows: in Section II literature

concerning geolocation of Internet hosts is summarized, focus-

ing on active techniques; Section III describes the localization

method and collection of data; in Section IV, the calibration

procedure for our particular environment is described; Sec-

tion V discusses some landmark selection techniques (which

are relevant for our crowdsourcing-based approach); Sec-

tion VI reports results and Section VII draws the conclusions.

II. RELATED WORK

The problem of finding the geographical position of a host

with a given IP address has been studied quite extensively in

the last decade, although a complete and reliable solution still

has to be found. Several methods are based on registries or

other static sources of information. The approach discussed

in [7] relies on the information extracted from the DNS.

Nevertheless, this data is provided by administrators and not

automatically produced, thus it is not frequently updated and

it is characterized by significant errors (as shown in [8]).

The WHOIS protocol is a de-facto standard for query-

ing domain name information. Several systems use WHOIS

databases for IP geolocation purposes, but records are often

unsynchronized or inconsistent. To overcome some of the pre-

vious problems, the traceroute utility has been used. Traceroute

returns the addresses of router interfaces along a network path

between two hosts. In fact, when addresses can be converted

in names via DNS, these frequently contain city, country or

airport codes, and GeoTrack uses this information to infer the

location of the target [2]. However the format of DNS names

is not standardized and this makes the technique not always

applicable.

GeoCluster, developed by the same authors of GeoTrack,

organizes IP addresses in geographical clusters using informa-

tion extracted from BGP routing tables [2]. Subsequently, if

some IP addresses in a cluster can be localized using external

sources, then the position of the other addresses in the same

cluster can be computed.

Other techniques do not rely on information contained in

databases and try to determine the position of a host using



active measurements. Delay-distance approaches use the end-

to-end delay for estimating the distance between targets and

landmarks. Unfortunately, the relationship between network

performance and geographic distance is affected by errors

introduced by the circuitousness of Internet routes and the

presence of multiple ISPs in a path [9]. In [10] the role of

topology on localization is investigated. For overcoming the

circuitousness and irregularity of Internet paths, and hence

improving the performance, landmarks should be uniformly

distributed on the surface of Earth.

In [4] the authors propose a technique that does not require

landmark-specific calibration. The technique relies on a prob-

abilistic approach, where the distribution of distances for a

given delay is independent from the position of the landmark.

This makes the system more resilient to measurement errors

and possible network anomalies.

Ziviani et al. [11] explored how a demographic landmark

distribution provides more accurate location estimation. They

also highlighted that the density of connectivity influences the

correlation between geographic distance and network delay.

In [12], the authors propose a multi-phase approach to IP

geolocation. In a first phase, the coarse region where the target

is located is estimated using the absolute delays with respect

to a number of hosts with known position (similarly to other

works). Then, the position of the target is determined more

precisely by measuring the relative delay against a set of pas-

sive landmarks located in its surroundings. Passive landmarks

are dynamically found by mining resources available on the

Web (e.g. businesses, universities or offices with a given ZIP

code).

All the previously mentioned works rely on measurements

that have been collected in rather protected environments,

mostly characterized by high speed wired links. In such

scenarios the measurement process is relatively stable and

reliable. This paper discusses a novel approach where the

measuring endpoints are smartphones enrolled according to

crowdsourcing principles. Since measurements are collected

via wireless links and using devices belonging to normal users,

specific procedures for calibrating the delay-distance model

and filtering devices have been developed.

III. SMARTPHONE-BASED LOCALIZATION

We propose an active IP geolocation technique that uses

smartphones as landmarks. The use of smartphones for this

purpose is motivated by their always increasing number,

which makes them an attractive platform for geographically

distributed applications. Moreover, smartphones participating

in measurements are enrolled according to crowdsourcing

principles; as a consequence, they are under control of their

respective owners and the set of devices dynamically changes

according to to their will.

These particular features (mobility of landmarks and crowd-

sourcing) make our approach rather different from the ones

proposed in the past, where landmarks were always fixed hosts

belonging to a rather homogeneous set (usually they were

placed within academic/research networks).

S ← ∅
for all i ∈ {1, . . . , n} do

if S = ∅ then

S ← CLi

else

if S ∩CLi
6= ∅ then

S ← S ∩ CLi

end if

end if

end for

Fig. 1: Calculation of S.

A. Method

Active geolocation of Internet hosts is based on collecting

round trip time (RTT) measurements from a set of landmarks

to the target IP address. Then, after having converted RTTs

into distances, a geometric technique is used to estimate the

position of the target.

Literature abounds of geometrical techniques for finding the

position of a target. We used a variation of the intersection

technique described in [13], as we found it to be rather

resilient to measurement errors. This technique is based on

the assumption that smaller RTTs correspond to measurements

affected, in general, by smaller errors. In our scenario RTT

values show larger variability with respect to previous studies,

because of two main factors: i) wireless networks are char-

acterized by higher variability, in terms of delay, than wired

networks (as a consequence of collisions and/or interferences);

ii) smartphones’ HW and OS are less suitable for collecting

accurate timestamps (e.g., because measurement are collected

at user-level in the presence of multitasking, energy saving

policies, etc).

More formally, let Lk = {Lk
1
, Lk

2
, ..., Lk

n} be the set

of landmarks participating in the measurement towards the

k-th target, where Lk
i is the i-th landmark. Let Mk

i =
{mk

i,1,m
k
i,2, . . . ,m

k
i,Rk

i

} be the set of RTTs between Lk
i and

the target T k, where Rk
i is the number of RTTs collected

by such landmark. To make notation easier to read, from

now on we will not use the k superscript when describing

a given measurement unless it is strictly necessary. Each

landmark selects the minimum RTT m̂i towards the target

host (m̂i = min(Mi)). Then it computes the distance from

the target T as:

ri =
m̂i

2
· CF · c (1)

where c is the speed of light in vacuum (c ≃ 3 · 106 km/s),

and CF is the Conversion Factor, a coefficient that models

the distance-delay ratio (discussed in Section IV).

For each Li the circular area CLi
of radius ri and centered

in Li is calculated, as the target T is supposed to be located

in such region. Let C = {CL1
, CL2

, . . . , CLn
} be the set of

all circles ordered in ascending order of ri. Thus CL1
will

be the circle with the smallest radius and CLn
the circle with

the largest radius. Let then S be the convex region where the

target T should be located, according to all measurements.

The algorithm shown in Figure 1 is used to compute S. In



Fig. 2: Example of localization using intersection.

practice, the intersection between circular areas is calculated

starting from the smallest ones and discarding those with

empty intersection with the previous ones. An example of the

localization technique is shown in Figure 2. L1, ..., L5 is the

set of landmarks. Circles correspond to the distances calculated

according to Equation 1. L1 is the landmark that registers the

smallest RTT towards the target. The intersection between the

circle centered in L2 and the previous one is then calculated.

Circles centered in L3 and L4 do not overlap with this area

and thus do not contribute further to calculate the position of

the target. The circle centered in L5 partially overlaps the area

defined by the intersection between the circles generated by

L1 and L2 and defines the area depicted in gray. The estimated

position of T is finally calculated as the barycenter of S.

B. Collection of measurements

Smartphones operate as landmarks, since they are generally

equipped with a GPS receiver and thus their position is

known. The set of smartphones involved in measurements

is not constant: as these devices have been enrolled ac-

cording to crowdsourcing principles, device owners installed

and uninstalled the measurement software according to their

necessities; moreover, the set of smartphones participating in

measurements also depends on their status at the time of mea-

surements (turned on/off, connected/disconnected). In the end,

we registered a rather large amount of variability in the number

of smartphones participating in measurements (from 2 to 157).

Enrolled devices are participants of the Portolan project [14], a

smartphone-based network measurement platform. To be part

of the Portolan project, users just have to install an app on

their devices. For the experiments described in this paper, only

Android-based smartphones have been considered (Portolan is

also available for standard PCs running Linux, Windows or

Mac OS X).

The set of targets is composed of 401 hosts participating

in the PlanetLab network [15]. We used PlanetLab nodes as

targets because their real position is known. The real position

of targets has been used to compute the error of the proposed

method (i.e. the difference between the real position and the

estimated position).

For performing a measurement each landmark sent a num-

ber of probes. The average number of collected RTTs is

approximately equal to 30 (R ≃ 30). The exact number

Fig. 3: Geographic position of landmarks (blue) and targets

(red).

depended on a variety of factors, related to both wireless

access and crowdsourcing approach. Events that may reduce

the number of collected RTTs include interrupted connections

because of smartphone movement, running out of energy, or

reaching the limits of users’ data plan. Measurements were

triggered by commands issued by the Portolan server. Actual

measurements towards a given target took place at slightly

different times for the involved landmarks, even though the

commands are sent by the server almost simultaneously. Also

in this case, the reasons are mostly related to the wireless

access and crowdsourcing approach: if the command is sent

by the server when a smartphone is not connected to the

Internet, the command is delivered as soon as the device

reconnects. Strong synchronization among landmarks is not

needed for IP geolocation purposes. Nevertheless, a large

interval between measurements increases the probability of

finding slightly different network conditions (e.g. because of

congestion) and thus, in turn, to increase the error affecting

the estimated distances. Probes were based on UDP, instead

of ICMP as commonly done in similar systems. The reason

for this choice is due to the unavailability of ICMP sockets in

Android without superuser privileges (the Portolan app runs

as a standard app at the user level) [16].

All measurements performed by smartphones have been

collected on a central server, where they have been saved onto

persistent storage. This data has been used for both calibrating

and evaluating the proposed method. Both calibration and eval-

uation have been performed off-line, to ensure repeatability of

experiments and the evaluation of different strategies on the

same dataset.

The geographic position of all landmarks (smartphones) and

targets is depicted in Figure 3. Both landmarks and targets

are more dense in Europe and North America than in other

continents. This reflects the distribution of both Portolan and

PlanetLab nodes, which are not uniformly spread on the globe.

IV. CALIBRATION FOR A WIRELESS SCENARIO

The outcome of Equation 1 strongly depends on the CF
coefficient. In this section we describe the procedure followed

to calibrate CF according to the collected data.

In the Internet, the end-to-end delay is composed of a

deterministic part and a stochastic part. The deterministic
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Fig. 4: Scatterplot of minimum RTT vs great circle distance

between landmark and target.

delay is due to the propagation delay, the transmission delay,

and the minimum processing delay achievable in each router

along the path. The stochastic delay is variable and it is due

to intermediate queues and extra processing time in routers

along the path. The conversion from delay measurement to

geographic distance is also distorted by other unpredictable

factors such as circuitous routing and the possible different

paths followed to reach the target. In our scenario, landmarks

(i.e. smartphones) are connected to the Internet via wireless

connections which, as mentioned, are characterized by greater

delay and variability with respect to wired links.

The theoretical minimum RTT that can be obtained is equal

to the required time for a signal to travel in optic fiber

along the great circle distance1 between the sender and the

receiver, without additional time for processing and queuing

in intermediate routers. Let d the great circle distance and

c the light speed in vacuum. The speed in optical fiber is

vopt ≃ 2/3 · c [17], which thus represent the maximum speed

for a real system. Nevertheless, such value cannot be easily

obtained in practice, and measurements in our dataset allow

us to state that in our scenario the packet speed is at most

vmax = 4/9 · c. This upper bound is consistent with [10].

Figure 4 shows the experienced RTT vs the real distance

in our dataset (the real distance can be calculated because

all targets belong to PlanetLab, and thus their coordinates

are known, whereas coordinates of landmarks are acquired

via GPS). Each point represents the minimum RTT obtained

during measurements. The dotted red line is the theoretical

minimum RTT obtained as RTTmin = d/vopt. The continuous

red line is obtained using CF = 4/9. Figure 4 shows that more

than 99% of ∼ 21700 sample points are above the continuous

red line (CF = 4/9) and that only ∼ 90 sample points have

CF = 2/3 as lower bound.

The choice of CF has a strong influence on the localization

process: if CF is too large it produces overestimated circular

areas, whereas a small CF value leads to underestimate them.

In the first case, the intersection among circular areas will be

1The great circle distance is the shortest distance between two points on
the surface of a sphere, measured along the surface of the sphere.

TABLE I: Access technologies, percentages of use, and CF
values.

Type % CF

2.5G 2.18% 0.1553

3G 27.71% 0.1930

4G 7.75% 0.2519

Wi-Fi 60.14% 0.2414

Not Available 2.22% -

large and the estimated position will be affected by a relatively

large inaccuracy, as shown in Figure 5a. On the other hand,

in the second case, areas may not cover the target position or

may generate an empty intersection, as shown in Figure 5b.

Figure 5c depicts the ideal conditions.

In previous works, like CBG [13], an offline calibration

was performed. In particular, the line of best fit is calculated

independently for each landmark. In a scenario characterized

by mobile devices this approach cannot be applied: a smart-

phone changes its position and access technology in an un-

predictable way. Moreover, the set of landmarks participating

in a measurement can be completely different from the set of

landmarks available during the calibration phase (because of

the crowdsourcing approach).

We performed an offline statistical analysis of our dataset in

order to estimate the optimal conversion factor CF . In details,

we used linear least squares regression, and we obtained a

value equal to 0.2234 (let us call CFALL this value).

A. Calibration based on access technology

When a measurement is performed, each landmark sends

to the remote database additional information, including its

geographical coordinates, network operator name and the type

of access technology (Wi-Fi, 3G, 4G, etc.).

We investigated if information concerning the technology

used for accessing the Internet by landmarks can be used to

improve the performance of the localization method. The basic

idea is to perform a customized calibration of CF for the

different access technologies, instead of using a single value

for all of them, in order to increase the accuracy of distance

estimation.

Table I shows the fraction of measurements for the differ-

ent access technologies. As can be noticed, the majority of

measurements have been collected using Wi-Fi, whereas 4G

and 3G are the other most used technologies. The values of

CF obtained according to a per-technology calibration are

also reported (let us call CFPT this values). As expected the

conversion factor grows when faster wireless connections are

used. Figure 6 shows the RTT vs distance scatterplots, sepa-

rated per access technology. For all of them, the coefficient has

been calculated using linear least squares regression. In terms

of general trend the scatterplots do not differ significantly, with

the exception of the one concerning 2.5G that is characterized

by a reduced number of measurements.

V. SELECTION OF LANDMARKS

From preliminary experiments we observed that, in many

cases, only a fraction of landmarks contributes to localize the
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Fig. 6: Scatterplot of RTT vs distance separated per access technology.

(a) Landmarks in North America have no influence on the result
(landmarks in blue, estimated position in red).

(b) Wrong result caused by a low-latency transatlantic link (landmarks
in blue, estimated position in red, real position in green).

Fig. 7: Examples of localization when using landmarks placed in different continents.

target. In fact, RTTs registered by some landmarks are so large

that the circular area associated to such landmarks can cover an

hemisphere. This situation occurs when landmarks are very far

from the target, e.g. when they are in Europe and the target

is located in South America. For instance, in Figure 7a the

region obtained at the end of the process (in red) is completely

contained within the regions produced using landmarks located

in North America 2.

Moreover, intercontinental backbone links can be the source

of additional errors because the CF value is calibrated for

paths that are generally slower. Figure 7b shows this problem:

2Regions in Figure 7a do not appear as circular because of the Mercator
projection, which is based on a cylindrical representation. Deformations are
particularly evident for large circles, which look like “sinusoids”.

the target, located in North America, is erroneously positioned

in the middle of Atlantic Ocean as results from the intersection

of the two circular regions. In this specific case, the region

produced by the European landmark is largely sub-estimated

due to a particularly fast and direct link (with respect to the

average paths from which CF has been calculated).

If the RTT scatterplots are observed in detail, it is easy to

notice that measurements at approximately 5000 km are less

dense. This somehow empty region approximately corresponds

to intercontinental distances. To confirm this hypothesis, the

source and destination continent for all RTTs has been deter-

mined: Figure 8a makes clear that almost all paths above 5000

km belong to different continents.

The separation degree between these two classes can be
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Fig. 9: Global localization procedure.

observed in Figure 8b: 99% of the distances having landmark

and target in the same continent are below 5900 km, whereas

only 12% of the intercontinental distances are below the same

value.

In general, landmarks with higher RTT values are less

accurate with respect to landmarks with smaller values. This is

reasonable, as the larger the distance, the higher the probability

to incur in congested nodes or more indirect paths [18]. For

these reasons, it is preferable to not include landmarks with

these characteristics in the localization process. Thus, the

global localization procedure operates as shown in Figure 9: all

measurements are given as input to the localization system; a

filter removes all measurements that correspond to landmarks

that are distant from the target more than a given threshold

(dth); remaining measurements are provided as input to the

intersection localization method.

By limiting the maximum estimated distance, the local-

ization accuracy of the system increases (when the distance

between a landmark and the target is higher than a given

threshold the measurement is discarded). Nevertheless, if too

many measurements are discarded the system may become

unable to provide an estimated position for the target.

VI. RESULTS

Figure 10 reports the localization results when using the

literature-based value of CF (4/9) and the CF calibrated for

our scenario. The localization procedure performs better when

using conversion factors specifically calibrated for a wireless

environment than the literature-based value (calculated in

wired environment). In particular, the median localization error

is equal to ∼ 820 km when using CFALL and ∼ 953 km when
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Fig. 10: CDF of localization error when using different CF
values.

using 4/9. These results have been obtained without selection

of landmarks (dth = +∞ and thus all landmarks have been

used, independently from their distance from the target).

The performance of the localization method when using

CFALL and CFPT is depicted in Figure 11a. Since the

performance of the localization procedure at the same time

depends on the maximum landmark-target distance, Figure 11a

reports the obtained results for a set of possible values (dth is

varied between 1000 km and 7000 km). As expected, when the

threshold used to discard landmarks is smaller, the localization

accuracy gets better. This improvement has a negative side-

effect: the fraction of localized targets becomes smaller as

well. This is due to the fact that the localization procedure

is unsuccessful when all targets are discarded during the

selection phase. Such phenomenon is mostly a consequence

of the crowdsourcing approach: the number of smartphones

involved in measurements is not under control and in some

cases is rather small. Figure 11b shows the distribution of

estimation error when CFALL and CFPT are used. Both

curves have been calculated with dth = 2500 km. In both

cases, the median localization error is ∼ 580 km. Selection of

landmarks with such threshold improves localization, in terms
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Fig. 11: Selection of landmarks depending on their distance from the target.

of median error, of approximately 250 km, with respect to

absence of filtering. No significant differences emerge when

using CFALL or CFPT , with exception of the cases where

dth is below 2000 km (i.e. when aggressive selection is used).

This may be due to the large fluctuations that affect RTTs,

thus the adoption of a better delay-distance model is almost

nullified by the large noise.

Error significantly increases when the distance between

targets and landmarks becomes higher, as the delay component

due to queues and possible congestion is more significant. Fig-

ure 12a depicts this finding. At the same time, the localization

error is inversely proportional to the number of landmarks that

take part in localizing a target: the higher the number of used

landmarks, the better the localization accuracy (as shown in

Figure 12b). Both these problems can be reduced by increasing

significantly the number of devices that participate in the

localization process. Unfortunately this is not easy to achieve,

as participation in a crowdsourcing-based platform depends

on the utility perceived by users. Moreover, participation

in a crowdsourcing platform can be either voluntary, as it

happens in our case, or based on incentives (see [19], [20]

for a discussion about incentived crowdsourcing and its use in

smartphone-based scenario, respectively). However, also in the

latter case, finding the appropriate reward mechanisms is not

trivial (possible incentives include money, access to services,

and altruism) [21], [22].

We verified the above considerations by restricting the

analysis to Europe, i.e. considering only the targets located

in Europe. This increases the density of landmarks in the

surrounding of targets because a relatively large fraction of

Portolan users are located in this continent. At the same time,

also the average distance between targets and landmarks gets

reduced with respect to the global case. In particular, 157 of

the 401 targets are located in Europe. In such conditions, the

median localization error becomes 383 km. It is interesting

to notice that this last result has been obtained using CFPT ,

whereas the use of CFALL provides worse results (429 km).

We may conclude that when measurements are less noisy, e.g.

when the average landmark-target distance is smaller, the use

of per-technology calibration brings some improvement.

VII. CONCLUSION

We presented an IP geolocation method that is based

on a crowdsourcing approach and that uses smartphones as

landmarks. Wireless access makes the localization process par-

ticularly troublesome. Independently from the specific access

technology (cellular, Wi-Fi) the end-to-end delay is larger and

less stable than the one obtained using wired access. As a

consequence, despite using a distance-delay model specifically

calibrated for a wireless scenario, estimated distances are

less accurate than the ones obtained in a wired scenario.

Another factor is the impact on the end-to-end delay of inter-

AS (autonomous system) communication. In our scenario,

smartphones addresses belong to ISPs and cellular operators

(“commercial” ASes), whereas targets are part of academic

and research networks. In several previous studies both land-

marks and targets were placed in “similar” or “close” ASes

(in some cases both categories were hosted in the PlanetLab

network), thus reducing the number of ASes to be traversed

and in the end reducing also the jitter that affects the delay.

Nevertheless, the influence of these factors on the end-to-end

delay was not quantified in existing literature and is left for

future work.
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