
Concurrency in modern C++
Nicola Bonelli

nicola@pfq.io

TOC
● Introduction to C++11/14
● RAII pattern
● Atomic operations
● Thread and namespace this_thread
● Mutex
● Mutex variants (timed_mutex, recursive_mutex…)
● Lock guard and unique lock
● Condition variable
● Promise/Future
● Async
● Compilers notes
● Exercises (monitor, working steal queue: producer/consumer)

Introduction to C++14

L-value vs. R-value expressions
Here are some general rules to distinguish between l-value and r-value expressions:

● An expression that can stand to the left of the assignment operator (=)
○ is an L-value

● An expression that cannot stand to the left of the assignment operator (=)
○ is an R-value

in addition...

● An expression that has a name is L-value
○ an expression with no name is R-value

● An expression that is possible to take the address of is L-value
○ otherwise R-value

L-value vs. R-value expressions (examples)

context expression kind comment

42 R-value 42 = 1; /* error! */

“hello world” R-value “hello world” = “ciao”; /* error! */

int a = 10; a L-value a = 42;

int a = 10; (1+a) R-value (1+a) = 42; /* error! */

std::string(“test”) R-value std::string(“test”) = “error!”;

L-value vs. R-value expressions (examples)

context expression kind comment

int fun(); return value R-value fun() = 10; /* error! */

int & fun(); return value L-value fun() = 11;

int fun(std::string v) v L-value v = “hello world”;

int fun(std::string &v) v L-value v = “hello world”;

int fun(std::string &&v) v L-value v = “hello world”;

Observations
● Unless (L-value) references, values returned from functions are R-values
● Regardless they are L- or R-value expressions, arguments passed to functions

by value are L-values within the function body
○ because they have a name

and... (pre-C++11 rules):

● references can bind to L-value expressions
● references cannot bind to R-value expressions
● const references can bind to both L- and R-value expressions

R-value references
● Starting from C++11, references (&) are named L-value references
● C++11 introduces R-value references (&&) which can bind only to R-value

expressions

Examples:

int fun(int &a) {...} int x = 10; fun(x); -> call the red one
int fun(int &&b) {...} fun(10); -> call the blue one

in addition… fun(std::move(x)) -> call the blue one

std::move casts L-value expressions to R-value ones...

Move constructor (and move assign. operator)
● C++11 also introduces two additional special member functions:

○ Move constructor: Object(Object && rhs)

○ Move assignment operator: Object& operator=(Object && rsh)

● How a compiler decide to use move or copy constructor?
○ A temporary object is an R-value expression
○ A std::move(object) is an R-value expression

■ Call move constructor if available (or pick the right overloading), copy constructor otherwise
○ Returning objects from functions…

■ Try RVO/NRVO optimization…

■ Use move constructor, if available

● A moved object is left in a valid but unspecified state that is safe:
○ for being destroyed or re-assigned

Move constructor (and move assign. operator)
● Classes from std are moveable when meaningful…

○ std::string is copyable, as well as moveable (assignable and move assignable)
○ all containers are moveable
○ std::unique_ptr<> is not copyable, but moveable (unique ownership/resource)

void fun(std::string name) {...} std::string me = “Nicola”;

fun(me) -> copy constructor

fun(std::move(me)) -> move constructor

std::string a = “hello”; std::string a = “hello”;

std::string b(a); std::string b(std::move(a));

hello

string a

hello

string a

Move constructor (and move assign. operator)
● Classes from std are moveable when meaningful…

○ std::string is copyable, as well as moveable (assignable and move assignable)
○ all containers are moveable
○ std::unique_ptr<> is not copyable, but moveable (unique ownership)

void fun(std::string name) {...} std::string me = “Nicola”;

fun(me) -> copy constructor

fun(std::move(me)) -> move constructor

std::string a = “hello”; std::string a = “hello”;

std::string b(a); std::string b(std::move(a));

hello

string a

hello

string b

hello

string a string b

nullptr

Universal reference and perfect forwarding
● A special case is that of forwarding reference (or universal reference):

○ forwarding reference => template r.value reference

template <typename T>

void function(T && arg) -> T && is unknown as Forwarding Reference

● It has a non-intuitive meaning because it obeys to:
○ type deduction of template arguments
○ collapsing rules

● A universal reference accepts both L-value and R-value expressions
○ PROBLEM: since the argument has a name (arg) within the body of the function it is always a

L-value expression!!!!

Universal reference and perfect forwarding
● To fix this problem, a special function designed to restore the original

L-value/R-value-ness of the expression is used: std::forward<T>
template <typename T>

void wrapper(T && arg)

{

function(std::forward<T>(arg));

}

● std::forward has the ability to cast the argument passed to:
○ L-value ref. if T was deduced as L-value ref.

■ if an L-value expression was passed to the function
○ R-value ref. otherwise

● perfect forwarding enables transparent wrappers
○ prior to C++11 transparent wrappers were possible only with macros

L-value ref, R-value ref, std::move and std::forward<T>

Interaction between caller/callee, move-ability and perfect forwarding….

signature std::move std::forward<T>

void function(std::string arg) OK -

void function(std::string &arg) BAD! -

void function(std::string const &arg) const &&? -

void function(std::string &&arg) OK -

void function(T && arg) BAD! OK

auto keyword and for-loop statement
● auto is a new keyword used to deduce the type of an expression in a

declaration statement
○ it follows the type deduction rules of template functions

● auto is useful in several situations:
○ auto n = 10; // deduced as int

○ auto result = function(); // deduced as the return type of function()

○ auto it = m.begin(); // std::map<std::string, int>::iterator it = …

● Auto is nice within for-loop: for(element : container)
○ similar to std::for_each, with the ability to break the iteration like a for

std::vector<std::string> vec; …
for (auto & elem : vec)

std::cout << elem << std::endl;

Lambda expressions and callable types
● lambda expression is an unnamed function locally declared

○ often used in place of “functor”, as the implementation is defined in-place:

std::sort(std::begin(v), std::end(v),

[](int l, int r) {

return l > r;

});

● lambda synopsis:
○ [capture-list] (arguments…) -> ret_type { body… }

● capture list includes the ‘local’ variables captured by lambda
[=] => by default capture all local variables in use by value
[&] => by default capture all local variables in use by reference
[this] => capture this pointer by value
[] => capture nothing

Callable types
● A callable type is the type of an object that supports the call operator:

○ A pointer to function is a callable type:
void (*fun)(int x, std::string n) = &function; -> fun(10, “hello world”);

○ A functor is a callable type:
struct functor { -> functor fun;

void operator()(int x, std::string n) fun(10, “hello world”);

{... }};

○ A lambda is a callable type:
auto fun = [] (int n, std::string n) { … }; -> fun(10, “hello world”);

○ …

● A function that takes a callback as a template argument is a high-order-function:
○ template <typename Callback> void high_order_function(Callback fun) { … };

RAII: Resource Acquisition Is Initialization
● RAII is a well-known pattern that does not requires any special C++11-14

extension
● The idea is that of an object that performs some I/O operations in the

constructor and reverses the side-effects in the destructor:
○ An object file which opens the fd in the constructor and release (close) it in the destructor is a

RAII object (std::fstream)
○ Smart pointers that allocates memory in the constructor and release it in the destructor...

● RAII objects are typically declared in the stack of functions
○ => when the function returns or throw an exception the objects in the stack are destroyed.
○ => no “leak” is possible...

● RAII is used in multi-threading to safely perform mutex lock/unlock

#include <atomic>

Data race
● Data race: when more than one thread of execution access the same memory,

with at least one writer.

int a = 0;

thread_1() { for(int i=0; i < 1000000000; ++i) {a++;} … }

thread_2() { for(int i=0; i < 1000000000; ++i) {a--;} … }

● Undefined behavior
○ What’s the value of a at the end? 0?

● To fix this a mutex is required (LOCK/UNLOCK is pseudo code here):
mutex m;

thread_1() { for(int i=0; i < 1000000000; ++i) {LOCK(m); a++; UNLOCK(m);} … }

thread_2() { for(int i=0; i < 1000000000; ++i) {LOCK(m); a--; UNLOCK(m);} … }

Data race (notes)
● A data race is avoided with a mutex; but wait…

○ if a simple increment can be a data race, how can a mutex be implemented?
○ It looks like a mutex is required in order to implement a mutex ?!?!?

● Fortunately not!
○ It exists a set of elementary operations supported by the CPUs that are safe to be executed

concurrently (and that operate on the same region of memory)
○ these operations are called atomic because they cannot be interrupted

● Before C++11…
○ atomic operations were implemented in assembly

■ no portability to different arch, #ifdef saga!

● Starting from C++11…
○ a subset common to all the existing CPUs is available!

Atomic operations
● What are the atomic operations supported by CPU?

○ load/store (that is read/write)
○ increment/decrement
○ add/sub
○ exchange
○ compare_exchange (a.k.a. CAS compare-and-swap)
○ and/or/xor

● If the architecture does not natively support a certain operation, a mutex is used

Atomic types
● Atomics are C++11 types that support atomic operations and correct memory

alignment

std::atomic_char, std::atomic_schar, std::atomic_uchar

std::atomic_short, std::atomic_ushort

std::atomic_int, std::atomic_uint,

std::atomic_long, std::atomic_ulong,

std::atomic_llong, std::atomic_ullong,etc.

● In addition, a template version std::atomic<T> exists
○ std::atomic<int> is equivalent to std::atomic_int (etc.)

● A partial specialization for std::atomic<T *> also exists
○ std::atomic<int *> int_prt;

std::atomic<T>
● constructor: atomic(T value)
● copy constructor: atomic(atomic const &) = delete;
● …
● bool is_lock_free() const;
● void store(T value, std::memory_order order = std::memory_order_seq_cst);

std::atomic<int> a; a.store(1);

● T load(std::memory_order order = std::memory_order_seq_cst) const;
cout << a.load() << endl;

● operator T() const => equivalent to load()
cout << (1 + a) << endl;

● T operator++(), T operator++(int), T operator--(), T operator--(int) (memory_order is not specifiable)
++a; b--;

std::atomic<T>
● T operator +=(T arg) T operator-=(T arg) (memory_order is not specifiable)

atomic<int> a; a += 42;

● T operator&=(), T operator |=() and T operator ^=() (memory_order is not specifiable)
atomic<int> a(0xcafe); a &= 0xbeef;

● T fetch_add(T value, std::memory_order order = std::memory_order_seq_cst)
T fetch_sub(T value, std::memory_order order = std::memory_order_seq_cst)
T fetch_and(T value, std::memory_order order = std::memory_order_seq_cst)
T fetch_or(T value, std::memory_order order = std::memory_order_seq_cst)
T fetch_xor(T value, std::memory_order order = std::memory_order_seq_cst)

perform the atomic operation and return the previous value, possibly with a
specified memory order

std::atomic<T>
● T exchange(T new_value, std::memory_order order = std::memory_order_seq_cnt);

std::atomic<int> a(10); cout << a.exchange(42) << endl;

● bool compare_exchange_weak(T & expected, T new_value, std::memory_order order =
std::memory_order_seq_cnt); (also _strong version exists)

std::atomic<int> x (11);

int expected = 11;

x.compare_exchange_strong(expected, 42);

TRUE => x had value 11 and now has value 42
FALSE => x has a different value and it’s stored in r

● the difference between _weak and _strong version is:
○ _weak version under certain architecture may fail even if the value matches the expected one.
○ _strong version fails only in case of race-condition with another thread.

// pseudo code…
//
if (x == expected) {

x = 42;
} else {

expected = x;
}

Memory models (hints)
● Memory models are policies that allow to control the way the architectures

perform certain in-memory operations and related visibility
● They represent the building block for portable, lock-free data structures and

algorithms
● In a nutshell, they allow to control the order of execution of certain operations

○ the compiler or CPUs may rearrange the order of instructions
○ other CPU may see the effects (writes) of our CPUs in a different order

● operations on <atomic> types have specifiable memory models
● the default memory_model_seq_cst (sequentially consistent)

○ guarantees a total order such that no reordering is possible.

#include <thread>

std::thread
● std::thread class models a thread of execution as an object
● std::thread is not copyable (copy ctor and assignment operator are explicitly

deleted)
● std::thread is moveable (and move assignable)
● constructors:

○ thread() // default constructor, it does not represent a thread of

 execution

○ thread(thread&& other) // move constructor

○ template< class Function, class... Args >

explicit thread(Function&& f, Args&&... args) // variadic template with perfect forwarding

 references (universal references)

● destructor:
○ ~thread() // destructor: if the object is a joinable state std::terminate() is called

std::thread (methods)
● join: void join()

○ blocks the calling process/thread until the thread associated with the object finishes its
execution

● detach: void detach()
○ detach the thread associated with the object, allowing the execution to continue independently

● joinable: bool joinable() const
○ return true if the thread is in a joinable state

■ not default constructed, not detached, not already joined

● get_id: std::thread::id get_id() const
○ return the std::thread::id of the thread

● ...

std::thread::id
● An instance of std::thread has an associated thread id (std::thread:id)
● A std::thread::id

○ is a unique identifier for a thread (like the pthread_t descriptor)
○ can be compared (with operator ==, !=, <, <=, >, >=),
○ has a stream operator (<<)

○ is hashable (a specialization of the functor class std::hash<> exists)

● std::thread::id can be used as Key in ordered associative containers
(std::map) and unordered associative containers (like std::unorderd_map)

● A default constructed std::thread::id represents a non-thread of execution.

namespace std::this_thread
A collection of free functions is available to calling threads:

● std::this_thread::get_id
○ return the thread::id of the calling thread

● std::this_thread::sleep_for
○ sleep for a given amount of time, duration spec. in <chrono> (e.g. std::chrono::seconds(1))

● std::this_thread::sleep_until
○ sleep until a given time-point defined in <chrono> (e.g. std::chrono::system_clock::now())

● std::this_thread::yield
○ reschedule the calling thread, allowing other threads to run

● ...

std::thread (example)
void worker(std::string name, int n)

{

 for (int i = 0; i < n; ++i) {

 std::cout << std::this_thread::id() << ‘:’ << n << std::endl;

 std::this_thread::sleep_for(std::chrono::seconds(1));

}

}

…
std::thread t (worker, “hello world”, 10);

 bool test = t.joinable(); // true

 t.join(); // block until t is terminated. (join or detach must be called before the object is destroyed)

// or… detach

t.detach();

// or… move the thread into a vector

std::vector<std::thread> workers;

workers.push_back(std::move(t));

std::thread (notes)
● All the arguments to be passed to the thread function must be passed to the

std::thread constructor
○ they are forwarded to the the thread function

● The return value of the thread function is ignored!
○ To return a value from a thread you can either:

■ copy such a value into a global/shared object and (from the main thread) wait the value with join()
■ use a conditional_variable
■ use std::promise/std::future (a new C++11 abstraction presented later)

● Exceptions thrown in the function thread terminate the program (if uncaught)
○ std::terminate is called
○ A good practice is to try { ... } catch { …} the whole thread function.

#include <mutex>

std::mutex
● A mutex is a synchronization primitive implemented as an non-copyable,

non-moveable object.
● std::mutex is defined in <mutex>:

○ default constructible
○ destructible
○ non copyable
○ non moveable

● std::mutex has the following methods:
○ void lock() (block if the mutex is locked by another thread)

○ void unlock()

○ bool try_lock() (try to lock, return false in case the mutex is already locked).

std::mutex (variants)
● Additional mutex types are:

○ std::recursive_mutex
○ std::timed_mutex
○ std::recursive_timed_mutex

○ std::shared_mutex (reader/writer mutex since C++17, today available from boost libraries)

● The recursive mutex permits the owner to take the lock multiple times
○ this prevents deadlock and is required under certain conditions (e.g. recursive functions)

● Timed mutex are equipped with two additional methods:
○ template <typename …> bool try_lock_for(Duration dur);

○ template <typename …> bool try_lock_until(TimePoint tp);

if (m.try_lock_for(std::chrono::milliseconds(10)) { … }

std::mutex
● std::mutex is not a RAII object

○ the effects (lock/unlock) are executed in methods and not in the constructor/destructor

○ having a mutex that locks in the ctor and unlocks in dtor is pointless, since the mutex is
designed to be shared resource among threads of execution (e.g. declared global)

void thread_2() {

for(int i = 0; i < 1000000000; ++i)

{

m.lock(); a--; m.unlock();

}

}

std::mutex m;

int a = 0;

....

void thread_1() {

for(int i = 0; i < 1000000000; ++i)

{

m.lock(); a++; m.unlock();

}

}

std::lock_guard
● std::lock_guard is a generic (template) lock with RAII design
● it can be used with any kind of mutex equipped with lock/unlock functions

○ std::lock_guard<std::mutex> lock(m);

● std::lock_guard locks the passed mutex (by ref.) in the constructor and unlock it in the
destructor…

● No explicit lock/unlock methods are exposed
std::mutex m;

int a = 0;

....

void thread() {

for(int i = 0; i < 1000000000; ++i)

{

std::lock_guard<std::mutex> lock(m); // lock

a++;

} // unlock

}

why std::lock_guard?
● std::lock_guard simplifies exception-safe code

Example:
An instance of std::vector<T> is shared among threads (protected by a mutex).
Suppose that T is a copyable class whose copy ctor (as well as move ctor) may throw exceptions:

std::mutex m;

std::vector<Object> v;

....

void function(args) {

Object data(args);

try {

m.lock(); // <- exception could be thrown here

v.push_back(data); // <- exception could be thrown here

m.unlock();

}

catch(std::exception &e) {

m.unlock(); // It is not safe to call if not locked!

 throw e;

}

}

why std::lock_guard?
● std::lock_guard simplifies exception-safe code

Example:
An instance of std::vector<T> is shared among threads (protected by a mutex).
Suppose that T is a copyable class whose copy ctor (as well as move ctor) may throw exceptions:

std::mutex m;

std::vector<Object> v;

....

void function(args) {

Object data(args);

try {

m.lock(); // <- exception could be thrown here

v.push_back(data); // <- exception could be thrown here

m.unlock();

}

catch(std::exception &e) {

m.unlock(); // It is not safe to call if not locked!

 throw e;

}

}

void function(args)

{

O data(args);

std::lock_guard<std:mutex> lock(m);

v.push_back(data);

}

std::unique_lock (1/2)
● unique_lock<M> is a lock_guard<M> improved, with:

○ std::unique_lock(M &mutex); (lock the mutex right now)

○ std::unique_lock(M &mutex, std::defer_lock_t);

don’t lock the mutex right now (the lock can be taken later)…
std::unique_lock<std::mutex> lock(m, std::defer_lock);

○ std::unique_lock(M &mutex, std::try_to_lock_t);
try to lock, don’t block in case it’s already locked (by someone else)

std::unique_lock<std::mutex> lock(m, std::try_to_lock);

if (lock) { … } // explicit conversion to bool…

● std::unique_lock(M &mutex, std::adopt_lock_t);
the mutex is already locked (by me), don’t lock it again!

std::unique_lock (2/2)
● destructor releases the lock (if owned)
● explicit locking methods:

○ void lock();
○ void unlock();
○ bool try_lock();

● additional methods:
○ template <typename…> bool try_lock_for(Duration dur);
○ template <typename…> bool try_lock_until(TimePoint tp);
○ M *mutex() const (return a pointer to the resource mutex…)
○ M *release() (disassociate the mutex from the unique_lock, and return a pointer to the mutex

or null is already released. No unlock takes place)
○ bool own_lock() const;
○ explicit operator bool() const;

■ return true if the unique_lock owns a locked mutex...

std::unique_lock (example)
std::mutex m;

std::vector<int> vec;

void thread(int n) {

std::vector<int> local;

std::unique_lock<std::mutex> lock(m);

vec.push_back(n);

local = vec;

lock.unlock();

slow_IO(std::move(local));

lock.lock();

…
std::sort(std::begin(vec), std::end(vec));

}

● unique_lock allows to create holes
within critical sections

● because IO operations are slow, unless
necessary, they should take place
outside critical sections

● because its features (the ability to
explicitly lock/unlock the mutex)
unique_lock is used with
condition_variables.

std::lock_guard vs std::unique_lock

arch. 64-bits lock_guard (~no overhead) unique_lock (internal state)

size 8 bytes 16 bytes

moveable? No Yes

allows holes in critical sections? No Yes, with explicit unlock() and
lock()

RAII? Yes (pure) Yes, different constructors

Allows a try_lock semantic? No Yes

work with condition_variable? No Yes

work with timed_mutex? Yes, but no timeout is specifiable Yes, try_lock_for, try_lock_until

#include <condition_variable>

std::condition_variable
● condition_variable (CV) is another synchronization primitive used to block

threads until a certain condition is satisfied
● since the CV is used in critical sections, a mutex is required

○ in particular a lock (and not directly a mutex) is used along with CV

○ because CV requires to unlock/lock the mutex, a unique_lock<M> is used (lock_guard is not
suitable)

● constructors:
○ default constructor
○ copy constructor deleted (CV is not copyable, move constructor not defined)

● notify:
○ void notify_one();

○ void notify_all();

std::condition_variable
● wait:

○ void wait(std::unique_lock<std::mutex> &lock);

○ template <typename Pred> void wait(std::unique_lock<std::mutex> &lock, Pred predicate);

● wait_for/wait_until:
○ template <typename ...> std::cv_status wait_for(std::unique_lock<std::mutex> &lock,

Duration dur);

○ template <typename Pred> std::cv_status wait_for(std::unique_lock<std::mutex> &lock,

Duration dur, Pred predicate);

○ template <typename ...> std::cv_status wait_until(std::unique_lock<std::mutex> &lock,

TimePoint tp);

○ template <typename Pred> std::cv_status wait_until(std::unique_lock<std::mutex> &lock,

TimePoint tp, Pred predicate);

● std::cv_status:
enum class cv_status { no_timeout, timeout };

std::condition_variable
Differences between various wait methods:

● wait blocks the calling thread until it is notified (_one or _all)
● wait with predicate blocks the calling thread until the predicate is satisfied

○ this is useful to deal with “spurious wakeup”
○ when notified, if the condition is not satisfied, the calling thread blocks again

○ it is basically equivalent to:
while (!predicate())

{ condvar.wait(lock); }

● wait with timeout (for a duration, or until a time-point)
○ blocks the calling thread until the thread is notified (or the predicate is satisfied) or the

timeout is expired
○ return cv_status::no_timeout if notified (or predicate satisfied), cv_status::timeout otherwise

std::condition_variable (basic with spurious wakeup)
std::condition_variable condvar;
std::mutex m;

…

 // thread …
 {

std::unique_lock<std::mutex> lock(m);

condvar.wait(lock);

// 1) while the thread is waiting the mutex is unlocked!
// 2) this thread might be woken up spuriously!!!

std::cout << “this thread just woke up!” << endl;

 }

// thread …

condvar.notify_one(); // wake-up one thread

condvar.notify_all(); // wake-up all threads
 (order is unspecified)

std::condition_variable (spurious wakeup handled)
std::condition_variable condvar;
std::mutex m;

bool signal = false;

 // thread …
 {

std::unique_lock<std::mutex> lock(m);

condvar.wait(lock, []() { return signal; });

// while the thread is waiting the mutex is unlocked!

std::cout << “this thread just woke up!” << endl;

 }

// thread …
{

std::lock_guard<std::mutex> lock(m);
signal = true;

}

condvar.notify_one(); // wake-up one thread

#include <future>

std::promise<T>/std::future<T>
● std::promise and std::future provide a thread-safe mean to pass a value across threads
● the promise is used to store a value (or an exception) and the future is used to access

such a value (or rethrow an exception) asynchronously
○ it’s not a queue (rather a single message thread-safe mechinary)

● std::shared_future is used to access the value from multiple threads of execution
● a special std::promise<void> specialization is also available…

std::promise<T> std::future<T> std::promise<T>

std::shared_future<T>

std::shared_future<T>

std::shared_future<T>

std::promise<T>
● constructor:

○ default constructor

○ move constructor

○ copy constructor deleted

○ destructor

● methods:
○ std::future<T> get_future()

○ void set_value(T const &)

void set_value(T &)

void set_value(T &&)

void set_value() // for promise<void>

○ void set_exception(std::exception_ptr e) // see: std::current_exception()

 std::make_exception_pointer(e);

○ ...

std::future<T>
● constructor:

○ default constructor

○ move constructor

○ copy constructor deleted

● methods:
○ std::shared_future<T> share() // obtain a shared_future

○ bool valid() const // tells whether the value is in a valid state

 (default ctor or moved futures are not valid)

○ void wait() const // wait for value to be ready (or the promise

 associated released)

template <typename …> std::future_status wait_for(Duration dur) const

template <typename …> std::future_status wait_until(TimePoint tp) const

○ T get() // block until the result is ready and return it

T& get()

void get() // special. for future<void>

std::promise<T> & std::future<T> (notes)
● std::promise and std::future have an internal state which takes into account:

○ if the state is valid or not
○ if the value is available
○ if an exception is stored

● the value (or the exception) can be set into the promise only once
○ an exception is thrown otherwise

● the value (or the exception) can be get from the future only once
○ the behavior is undefined if the future is not in a valid state

● the future destructor:
○ blocks if the future was created with std::async and the value is not ready yet
○ does not block otherwise

promise + future example
#include <iostream>

#include <future>

#include <vector>

#include <thread>

…

std::promise<std::vector<int>> pro;

auto fut = pro.get_future();

std::thread t(thread_fun, std::move(pro));

t.detach();

…
auto res = fut.get();

for (auto elem : res)

std::cout << elem << std::endl;

promise + future example
#include <iostream>

#include <future>

#include <vector>

#include <thread>

…

std::promise<std::vector<int>> pro;

auto fut = pro.get_future();

std::thread t(thread_fun, std::move(pro));

t.detach();

…
auto res = fut.get();

for (auto elem : res)

std::cout << elem << std::endl;

void thread_fun(std::promise<std::vector<int>> pro)

{

 try

 {

std::vector<int> ret;

for(int i = 0; i < 10; ++i)

ret.push_back(i);

pro.set_value(std::move(ret));

 }

 catch(...)

 {

 pro.set_exception(std::current_exception());

 }

}

std::async
● To ease the use of promise and future, std::async packages everything in a function

○ std::thread, std::promise, std::future, exception handling

● std::async deduces the type for promise/future (as the return type of the callable
function) and launches a computation (possibly) asynchronously

○ an optional policy specifies whether the computation is deferred (lazy) or asynchronous
● Synopsis:

○ auto fut = std::async(callable_function, args…);

int sum_v(std::vector<int> const &v)

{

int ret = 0; for(auto elem : v) ret += elem; return ret;

}

auto sum = std::async(sum_v, std::vector<int>{1,2,3});

std::cout << sum.get() << std::endl;

std::async
● template <typename Function, typename … Args>

std::future<...> std::async(Function fun, Args && ...args)
○ the computation may be evaluated in a new thread, or it is executed deferred (lazy)

● template <typename Function, typename … Args>

std::future<...> std::async(std::launch policy, Function fun, Args && ...args)

● namespace std { enum class launch {

async, // launch the computation in a new thread

deferred // make a lazy evaluation

 the computation is evaluated in the calling thread...

}; }

std::async example
#include <iostream>

#include <future>

#include <vector>

#include <thread>

…

auto fut = std::async(std::launch::async,

 async_fun);

…
auto res = fut.get();

for (auto elem : res)

std::cout << elem << std::endl;

std::vector<int> async_fun()

{

 std::vector<int> ret;

for(int i = 0; i < 10; ++i)

ret.push_back(i);

return ret;

}

std::async + lambda example
#include <iostream>

#include <future>

#include <vector>

#include <thread>

…

auto fut = std::async(std::launch::async,

 []() {

std::vector<int> ret;

for(int i = 0; i < 10; ++i)

ret.push_back(i);

return ret;

 });

…
auto res = fut.get();

for (auto elem : res)

std::cout << elem << std::endl;

std::async (defects)
● The ~future<T> is blocking when:

○ the future is created with std::async and the value is not ready
● This makes difficult to pass a std::future to generic code

○ behavior is different
● Therefore the following code (on the left) does not parallelize the action

○ e.g. an IO action that returns an integer read from a file

std::vector<std::future<int>> vec;

for(int i = 0; i < 10; ++i) for(int i = 0; i < 10; ++i)

{ {

 std::async(std::policy::async, action); vec.push_back(std::async(std::policy::async,

 action));

} }

for (auto & fut : vec)

std::cout << fut.get() << std::endl;

Compilers notes
● g++-4.9 (GNU compiler)
● clang-3.5 (apple/google open-source)
● options for different standards:

○ C++11: -std=c++11
○ C++14: -std=c++1y (not fully available)
○ draft C++17: -std=c++1z

● multithreading: -pthread
● optimizations: -O0, -O1, -O2, -O3, -Os
● debug options: -g (usually used with -O0)
● command line example:

○ g++ test.cpp -o test -std=c++1y

● preferred build-system:
○ cmake (www.cmake.org)

References
● Effective Modern C++: Scott Meyers

○ introduction to C++11/14

● C++ Concurrency in Action: practical multithreading - A. Williams

● http://en.cppreference.com/: C++11/14/~17 online documentation

● http://www.italiancpp.org/: italian C++ community

http://en.cppreference.com/w/
http://en.cppreference.com/w/
http://www.italiancpp.org/n
http://www.italiancpp.org/n

Exercises
1. Immaginare uno scenario in cui N thread incrementano una variabile

condivisa e poi si sospendono per un tempo variabile tra i 3 e i 5 secondi,
prima di proseguire. Implementare una barriera che impone a tutti i thread,
una volta risvegliati, di attendere il risveglio degli altri prima di proseguire

2. Immaginare un buffer condiviso in cui scrivono e leggono due tipi di thread:
lettori e scrittori. Ogni valore nel buffer è inserito da un solo scrittore, ma deve
essere letto da tutti i thread. Le letture possono avvenire in parallelo.
Implementare lo scenario con i thread C++14 e le strutture viste a lezione.

