Question Classification with
Untrained Recurrent Embeddings

Danicle Di Sarlil0000-0003-4129-0131] ' Claudio Gallicchiol0000-0002—-6692—-2564]
and Alessio Michelil0000—0001-5764—5238]

Department of Computer Science
University of Pisa, Pisa, Italy
daniele.disarli@gmail.com, {gallicch,micheli}@di.unipi.it

Abstract. Recurrent Neural Networks (RNNs) are at the foundation of
many state-of-the-art results in text classification. However, to be effec-
tive in practical applications, they often require the use of sophisticated
architectures and training techniques, such as gating mechanisms and
pre-training by autoencoders or language modeling, with typically high
computational cost. In this work, we show that such techniques could
actually be not always necessary. In fact, our experimental results on a
Question Classification task indicate that using state-of-the-art Reservoir
Computing approaches for RNN design, it is possible to achieve competi-
tive or comparable accuracy with a considerable advantage in terms of
required training times.

Keywords: Text classification - Recurrent Neural Networks - Echo State
Networks.

1 Introduction

Recurrent Neural Networks (RNNs) have long been the de-facto standard neural
architectures for many Natural Language Processing tasks [TI823]29], mainly
because they allow to model the input and output text as a sequence of words or
characters. Unfortunately, during training vanilla implementations of RNNs suffer
from the well-known problems of gradient vanishing and gradient explosion, which
make these networks difficult to train in the presence of long-term dependencies
within the input [2].

Some approaches have gained popularity for their ability to avoid or alleviate
the problems associated with the gradient propagation during training. For
example, gated architectures like Long Short-Term Memory (LSTM) [15] and
Gated Recurrent Unit (GRU) [8] are based on the idea of gating mechanisms that
selectively remember and forget by regulating the flow of information through
each time step, helping to alleviate the vanishing of the gradient. Recently, the
development of the Transformer architecture [34] made it possible to more easily
perform training by not using any recurrent network within the model and
employing self-attention mechanisms instead. Increasingly often, transfer learning
is used to train a task-independent language model on a large variety of text

2 D. Di Sarli et al.

corpora (for example by employing an autoencoder or a classifier with a next-step
prediction task) and then fine-tune it to the task at hand.

These techniques can lead to a significant increase of cost in terms of training
time due to their considerable use of computational resources, with different kinds
of repercussions such as economic availability, financial costs, and environmental
impact. Currently, training a single Transformer model has been estimated to
produce about 87 kg of CO45 on commonly used hardware and cloud computing
services, with a financial cost in US dollars between $289 and $981 [33]. Do these
high cost techniques provide an equally significant improvement in predictive
performance? In this paper, we try to address this question by proposing an
approach based on RNNs from the class of Reservoir Computing (RC) [26l35], and
comparing it with current state-of-the-art results in the literature. In particular
we propose the use of Echo State Networks (ESNs) [T6/17], a recurrent RC model,
to produce by means of randomly initialized and untrained weights an embedding
for the input text, which can then be used for classification tasks. While the
network is largely untrained, we use advances in the architectural setup of ESNs
and we explore the impact of an attention mechanism in this context. Unlike
the commonly used approaches, thanks to the fact that the recurrent part of our
model is completely untrained, we are able to achieve a strikingly fast training
process. We then experimentally assess the feasibility and the performance of
our approach with a focused analysis on a Question Classification task.

We briefly introduce the characteristics and advantages of the ESN model in
Section [2| where we also address advances on recurrent connections shaping. In
Section [3] we present the proposed models, which we then validate on a Question
Classification dataset, described in Section [l Our experiments and methodology
are reported in Section[5} while a discussion of the results is presented in Section [6]
Finally, in Section [7] we draw the conclusions of this study.

2 Echo State Networks

The framework of RNNs offers a useful and effective method for modeling
sequences. In what follows, we use T to denote the length of a generic input
sequence. Whenever a specific sequence i is considered, its length is denoted by
T;. Moreover, we use Ny;, Nr and Ny respectively to denote the size of the input
layer, the number of hidden recurrent units (i.e. the size of the state embedding),
and the number of output units in the RNN model. Given an input sequence
composed of vectors u(1),...,u(T) € RNV a generic RNN scans the input
left-to-right and computes a sequence of states x(1),...,z(T) € RV having the
same length T'. From these states, an output (in the form of a sequence or of a
single element) is then computed. RNNs are usually trained by gradient descent
algorithms, which are subject to the problems associated with the gradient, as
briefly discussed in Section [T} and can be costly to run.

On the other hand, radically different approaches like ESNs [I6J17], from the
RC paradigm, are based on the stable initialization of the recurrent dynamics
so that the training of the parameters in the recurrent part of the network can

Question Classification with Untrained Recurrent Embeddings 3

be avoided altogether. The state of the network at each time step is computed
by an untrained dynamical system with randomly initialized parameters called
“reservoir”’, and the output is typically extracted from the state of the reservoir
by means of simple linear regression techniques (even though more complex
approaches can be used) [26]: ESNs are thus an efficient approach to modeling
and training RNNs.

The state dynamics of an ESN at a particular time step ¢, in the case of
leaky-integrator neurons [I8] and hyperbolic tangent activation functions, are
ruled by the following equation:

z(t) = (1 — a) z(t — 1) + atanh (Wmu(t) + Walt - 1)) : (1)

where x(0) = 0, W, € RVNeXN g the input-to-reservoir weight matrix, and
W e RVNexNr ig the recurrent reservoir-to-reservoir weight matrix. The scalar
value a € R is the leaking rate, under the constraint that 0 < a < 1. For simplicity
of notation, here and in the rest of this paper the bias term is omitted.

The key difference between an ESN and a vanilla RNN is in the fact that in
the ESN the values in the weight matrices W;,, and W are not trained, instead
they are initialized on the basis of stability constraints. These are given by the
global asymptotic stability property known as the Echo State Property [26/16/36],
and, under a practical perspective, they entail the control of algebraic properties
of the recurrent weight matrix of the dynamical reservoir. Specifically, the weight
values in W are randomly initialized and then re-scaled to control the value
of the spectral radius p = p(W) (i.e. its largest eigenvalue in absolute value).
Similarly, the values in W ;,, are randomly chosen from a uniform distribution
on [—w,w], where w € RT acts as input scaling. The values of p and w are
hyperparameters that are chosen by model selection. Moreover, both W;,, and
W in Equation [1| can be sparse matrices, since this causes a drop in the state
transition computational cost, typically without any associated loss in terms of
predictive performance [11].

After the input sequence has been fed in, the states produced by the ESN
can be used to compute the output. Given the typical high dimensionality of the
reservoir, it can be sufficient to use a simple linear layer (“readout”) to perform
the classification. In that case, the output y(t) € RMY for a generic state x(t) is
simply:

y(t) = Woualt), (2)

where W,,,; € RVY*Nr is the matrix containing the output weights, which are
the only free parameters that are adjusted on a training set. Given the formulation
in Equation [2] training reduces to solving the following least squares problem:

min [W o, X — Y3 (3)
Wout
In Equation [3| we use X € RNzXNirain o denote the state matrix, i.e. the column-

wise concatenation of the Ny.q;, states produced by the ESN that need to be
classified, and Y, € RNy XNirain tg indicate the column-wise concatenation of

4 D. Di Sarli et al.

v

<

w Multi-ring reservoir units

Fig. 1. On the left, an example of a recurrent matrix w generated as per Equation
On the right, a representation of the corresponding multi-ring reservoir.

the target vectors. The parameters of the linear readout, i.e. the weight values in
W out, can then be computed in closed-form by exploiting direct methods, such
as ridge regression [20], as follows:

Wour =Y, XT(XXT 4 0\1)71, (4)

where T is the identity matrix, and A\, € RT is the regularization parameter.

2.1 Multi-ring Reservoir Topology

For the recurrent part, the networks that we are proposing adopt an ESN that
follows the same dynamics as in Equation [} The only difference is that the
matrix W is constructed in order to implement a constrained topology [326]. In
particular, we take
W =P, (5)
where P € {0, 1}V2*NR ig a randomly generated permutation matrix and v € Rt
is a scalar that determines the spectral radius of W, i.e. p(W) = v. This follows
from the fact that since P is a permutation matrix it is also orthogonal, i.e. for
any vector w:
[vPw| = v w]. (6)

If w is an eigenvector of matrix v P with associated eigenvalue), i.e. vPw = \w,
then it follows that
[oPw|| = [A[||w]. (7)

From (6) and (7) we conclude that [A| = v for all eigenvalues, hence p(vP) = v.
For this reason, in the following we will consider p = v, whose value is to be
selected by hyperparameter search.

The “multi-ring” layout that emerges from this configuration (see Figure |[1)
has many advantages, the most important one being that it allows building
large reservoirs with minimal state transition cost. In fact, the matrix-vector
multiplication Ww(t — 1) in Equation [1f can be implemented in linear time in
the case of a multi-ring reservoir. Moreover, the space requirements for matrix

Question Classification with Untrained Recurrent Embeddings 5

A A

word 1 |

u(1)
s

word2 — | % g

u(2) o o
% = | — &9
2 ? Output
S
Q

wordn]| - by

it A0 |#(1)

) O/

Bi-ESN

Fig. 2. Representation of the Bi-ESN model. Input words are transformed to vectors via
pretrained word embeddings, then they are fed through a bidirectional leaky ESN. The
final states are then concatenated for each direction, and fed to a linear classifier. The
only parts of the model that undergo training are represented by a shaded background:
in this case, only the final linear layer.

W shrink from O(N2) to O(Ng). Even further, the time required for initializing
the network is reduced since it is not necessary to compute the spectral radius
of W to rescale it, but it is possible to cheaply initialize the matrix with the
desired value of p.

3 Proposed models

Our proposed models implement a bidirectional recurrent architecture [5I30]: we
use two separate networks to scan the input from left to right and from right
to left. In the following sections we present the variants of the models that we
designed, all of which adopt an ESN for the recurrent module but use different
implementations for the readout. Specifically, the first model uses a simpler
readout component and is described in Section The second model, which
includes a self-attention mechanism, is presented in Section [3.2]

3.1 Bi-ESN

With our simplest model, Bi-ESN, we introduce in the literature the use of a
bidirectional orthogonal (multi-ring) architecture for the reservoir of a leaky
ESN, in order to produce a fixed size untrained embedding of the input text as
illustrated in Figure [2] The embedding is created by running the input through

6 D. Di Sarli et al.

"

word1 __, z(1)
u(1)
= 5| -
2 wn
word2 __| 3 g z(2) f_';" g
u(2) ® 5 1 3
2 g | —s | —
= <
g ; s 3 Output
3 e
z(T
word n 2(T)
u(T)

Fig. 3. Representation of the Bi-ESN-Att model. Input words are transformed to vectors
via pretrained word embeddings, then they are fed through a bidirectional leaky ESN.
All states from each direction are then concatenated (dashed rectangles) and fed one
by one to a linear layer that performs dimensionality reduction. After that, the self-
attention mechanism selects the most important states, which are summed together
and fed to a linear classifier. The only parts of the model that undergo training are
represented by a shaded background.

the bidirectional ESN and then taking the concatenation of the last forward and
backward states, resulting in a single vector of size 2Ng. This vector is then
processed by a simple linear layer.

Let us denote with ;(t), g(t) € RV® respectively the forward and backward
state associated to w(t). If zn(t) is a forward state for the n-th training example
(and similarly for <En(t)), then in order to train the Bi-ESN with ridge regression
we apply the same formulation as in Equation[d] where in this case the state matrix
contains the concatenation of forward and backward states, i.e. X € R2NrXNerain
given by:

— — —
_ | z1(T) 2o(T2) - Z Ny (TN i) (8)
= |+ <~ <~
x1(1) z2(1), (1)
with 1,15, ..., Tn,,,,, representing the lengths of the training input sequences.

3.2 Bi-ESN-Att

We compare Bi-ESN with a more advanced model that is still based on a multi-
ring leaky Bi-ESN, but uses a more sophisticated readout implementation. The

Question Classification with Untrained Recurrent Embeddings 7

model that we are proposing is a novel application of a self-attention mechanism
to a bidirectional multi-ring ESN. As shown in Figure [3| unlike Bi-ESN this
model makes use of all the states produced by the ESN, both in the forward
and backward direction. In fact, the forward and backward sequences of states
are concatenated to produce a single sequence of vectors of size 2Ny, each of
which goes through the same linear layer with the purpose of reducing the vector
dimensionality to Np. If 33)(75), g(t) € RN= are respectively the forward and
backward states associated to u(t), and Wy, € RVPX2Nr i5 a3 weight matrix,
then the state vector after dimensionality reduction, Z(t) € RV?, is computed as:

%(t) = tanh (Wdr [z’(t), ‘E(t)D . 9)

After that, an attention mechanism selects the most important states from the
whole sequence. The particular kind of attention that we use is the “self-attention”
[25], which unlike other techniques (see for instance [I]) does not require any
additional information other than the sequence itself. Intuitively, in its simplest
form the attention mechanism works by assigning a score to each of the states
produced by the ESN, based on the relevance that they have in relation to the
task. These scores are then used to compute a weighted sum of the state vectors,
which leads to a fixed size representation for the whole sentence focused on the
most important features. Let T' be the length of the input sequence, let r € R be
the number of parts in the sentence on which the attention mechanism is allowed
to focus, and let d, € R represent the number of hidden units for computing
the scores. Then, if W, € R%*Np and Wy € R™%% are weight matrices, the
self-attention scores A € R™*7 are computed as:

X —] c RTXND
#(T)7
A = softmax (ng tanh (Wle'T)) .

As can be noticed from Equation none of the weight matrices depend
on the length of the sequence. The attention scores are then used to extract a
fixed-size weighted sum of the most important states into a matrix M € R™*Np:

M=AX. (11)

As for hyperparameters r and d,, we simply take r = 1 and d, = Np. In this
case, M reduces to a vector of size Np that we then classify using a linear layer.
Note that all free parameters of the model can be trained end-to-end by
gradient descent. Since unlike what happens in standard RNNs here the gradient
only flows through a short path, we do not incur in the issue of gradient vanishing.

8 D. Di Sarli et al.

4 TREC Dataset

The TREC dataset for Question Classiﬁcationﬂ [24] is a commonly used bench-
mark for Natural Language Processing which deals with the classification of a
number of sentences, written in English, into one of 6 classes about their topic
(i.e. whether they ask about a person, a location, a number, a human being, a
description or an entity).

The dataset has been split in three folds: training, validation and test. The
test fold is directly provided by the authors of the dataset [24] and is composed
of 500 labeled questions. We divided the training data, composed of 5452 labeled
questions, by the commonly used “80/20 rule”, where 80% of the instances (chosen
at random) are used for training and the other 20% for validation. This yields
a training set of 4362 questions and a validation set of 1090 questions, with
similar class distributions between the two sets (we did not perform an explicit
stratification).

The questions are tokenized and each word is then represented by a pretrained
FastText embedding vector for the English language, with 300 dimensions [14].
In case of words without a corresponding embedding, a random vector of the
same shape is used. This vector is different for each missing word. While the
NLP community is pushing towards context-sensitive word embeddings, in the
current setting we chose FastText for its relative efficiency.

5 Experiments

We performed all our experimentﬁﬂ on a single NVIDIA Tesla V100 with 16
GB of memory, and we developed our models by using the PyTorch framework
[27] which provides automatic differentiation. In addition to the Bi-ESN and
Bi-ESN-Att that we have described in Section [3] we also implemented a standard
bidirectional GRU (Bi-GRU) that we use for comparison purposes on the analysis
of accuracy and efficiency.

After hyperparameter tuning on the validation set, our models have been
retrained on the whole training and validation data to get a final estimate of the
performance. In addition, all measurements of the test performance have been
performed by repeating the process 10 times, with different random initializations
each time, and averaging the results.

The simple linear readout allowed us to train Bi-ESN by ridge regression,
while all other models were trained by mini-batched gradient descent using the
Adam algorithm [21] and cross entropy as loss function. This led to a very short
training time for Bi-ESN, which allowed us to cheaply compute also an ensemble
out of the predictions of 10 identical networks with different random initializations
(we simply average the output scores and then take as final prediction the class
corresponding to the highest averaged score). As before, also for the ensemble we

! Thttp://cogcomp.org/Data/QA /QC)/
2 Source code for reproducing the experiments is available at https://github.com/
danieleds/qc_with untrained recurrent embeddings.

http://cogcomp.org/Data/QA/QC/
https://github.com/danieleds/qc_with_untrained_recurrent_embeddings
https://github.com/danieleds/qc_with_untrained_recurrent_embeddings

Question Classification with Untrained Recurrent Embeddings 9

repeat the training process 10 times in order to compute a mean accuracy and
standard deviation, for a total of 10 x 10 = 100 repetitions.

For model selection of Bi-ESN and Bi-ESN-Att, we chose the number of
recurrent units Nz within [500, 10000]. The values for w and p have been selected
in [e~7,e!], while the connectivity ratio of the input-to-reservoir matrix and
leaking rate have been chosen in (0,1). The ESN hyperparameters have been
chosen separately for the forward and backward direction. For Bi-ESN-Att,
the number of units Np has been selected in {128,256,512}. Regarding the
optimization algorithm, we chose a learning rate in [e~?,e73] and an early
stopping strategy with a maximum of 500 epochs, while for regularization we
used dropout and a weight decay strength in [e=2,1]. In the case of Bi-ESN,
which is instead trained by ridge regression, we simply choose the regularization
parameter \, within [1076,10]. For searching within the hyperparameter space
we used a combination of random search [4], simulated annealing [22] and tree-
structured Parzen estimator [3]: at each iteration, we randomly choose one of
these three algorithms to select the next point in the hyperparameter space.

6 Results

The results of our experiments are reported in Table [I] For comparison, we also
report the performance achieved by state-of-the-art models in the literature.

The first important observation that can be drawn from Table [I] is that all
our proposed models which are based on an ESN, and that are thus exploiting
a completely untrained recurrent dynamics, are able to compete against a fully
trained Bi-GRU. In the case of the ensemble model, the accuracy is even matched.
The remarkable fact is that this comes with an extremely lower training cost
for the Bi-ESN which has turned out to be at least 70 times more efficient than
Bi-GRU. In fact even the ensemble model, which requires the training of 10
differently initialized classifiers, is still highly competitive against the Bi-GRU
in terms of training time (and could trivially be further improved by applying
parallelization between the different instances).

Adding an attention mechanism on top of the ESN as we did with Bi-ESN-Att
led to a gain in predictive performance with respect to Bi-ESN, but this gain was
rather limited. This may be due to the relative simplicity of the TREC dataset,
which exhibits short sentences with a relatively simple structure. In fact, many
sentences start with “Who is”, “How many”, “Where is”, “When did”, and so on.
The bidirectional architecture (and in particular the backward direction), then,
seems sufficient to capture these important features in the data, as illustrated
in Figure [Still, Bi-ESN-Att is more efficient than a simple Bi-GRU, requiring
just one-seventh of the time to get trained.

Regarding the reported literature results it is worth noticing that, regarding
the SVM [31] and KDA [9], the authors do not specify how model selection was
performed, so it is difficult to provide a uniform comparison of the generalization
capability of these models when compared to our own. Also, among the different
results shown for different configurations of the approaches, we have reported

10 D. Di Sarli et al.

Table 1. Results on the TREC dataset. Asterisks indicate those models for which the
methodology for model selection was not specified (see the text for details).

Our implementations

Model Accuracy Training time
Bi-GRU 93.8 £ 0.4 450s £ 40
Bi-ESN 93.3 + 0.6 6s £ 1
Bi-ESN, ensemble 93.8 £ 0.2 62s £ 17
Bi-ESN-Att 93.5 £ 0.9 65s £+ 8

Previous literature

Model Accuracy
SVM [31] 95.0 *
Paragraph Vector [37] 91.8
Ada-CNN [37] 92.4
CNN-non-static [20] 93.6
CNN-multichannel [20] 92.2
DCNN [19] 93.0
KDA [9] 94.3 *
LSTM [38] 93.2
Bi-LSTM [38] 93.0
C-LSTM |[38] 94.6
Ur [93.2
CNN,nq [7] 97.9
Ur+CNNy2, [7] 98.7

the best on the test set as highlighted by the authors. Moreover, the SVM uses
as features 60 highly engineered hand-coded rules, which could directly harm
generalization when applied to other datasets. The CNN,.,,4 from [7] should have
an architecture identical to the one previously introduced in [20], but the authors
do not provide an explanation for the extremely high increase in accuracy with
respect to the original paper. Finally, models Uy and Up+CNN,,9, make use of
sentence embedding transfer learning, with weights trained on unrelated tasks
on large text corpora, while we only make use of the examples within the TREC
dataset and limit our use of transfer learning just to pre-trained word embeddings.

In light of the above considerations we can see how, with no more than 65
seconds of training time, our proposed models are able to approach or match the
predictive performance of many of the models in the literature, with a few above-
mentioned exceptions which could be attributed to a different model selection
strategy or to the heavy use of transfer learning. A notable observation is how
our Bi-ESN, with only 6 seconds of training time, is able to match (and slightly
surpass) a fully trained Bi-LSTM, which is an architectural superset of our
Bi-GRU for which we can thus estimate a supposedly similar (or worse) training
time of around 7.5 minutes.

We were not able to reach the high accuracy of Up+CNN,2, [7], however we
want to highlight the fact that Uy and Up+CNN,9, have more than 200M pa-
rameters. In comparison, our largest model (Bi-ESN-Att) has just 1.6M trainable

Question Classification with Untrained Recurrent Embeddings 11

How old was the youngest president of the United States ?
When was Ulysses S. Grant born ?

Who invented the instant Polaroid camera ?

What is nepotism ?

Where is the Mason/Dixon line ?

What is the capital of Zimbabwe ?

What are Canada 's two territories ?

Fig. 4. Visualization of the intensity of the attention scores assigned by Bi-ESN-Att
to some of the sentences in the dataset. As you can see, it is common for the network
to focus mainly on the first word of the sentence since it carries the most important
information for the task. This specific region of focus is implicitly provided by any
bidirectional architecture without the need of self-attention.

parameters and, despite that, all our proposed models are able to compete with
Ur, which uses the encoder of a transformer and is pre-trained with data from
Wikipedia, web news, web question-answer pages and other sources.

7 Conclusion

Sophisticated architectures requiring high amounts of computational resources
are not uncommon in the field of Natural Language Processing. While definitely
effective and justified on most complex tasks, they can be overkill in other
situations. In order to investigate how a highly efficient model can compete in
these situations, for the first time in the literature we have proposed the use of a
bidirectional multi-ring ESN, possibly associated to a self-attention mechanism.

To determine the efficacy of the approach, we have selected a Question
Classification task which allowed us to compare our method and architecture
with those of different kinds of works in the literature, showing how our own is
comparable with the state-of-the-art performance of many of the alternatives. In
the cases where a direct comparison has been possible, this showed the extreme
efficiency of the proposed models.

In particular, we have demonstrated how a Bi-ESN shows basically the same
accuracy of another recurrent model, Bi-GRU, while however presenting notable
computational advantages, namely 1) not requiring any gating mechanism, and
2) keeping the input and recurrent weights untrained. In other words, the largest
percentage of computational time used for training a GRU is actually unnecessary
and detrimental. This can only get worse with other gated models, like LSTMs,
for which to the same state size corresponds a higher number of parameters that
need to be trained.

In addition, we showed how our Bi-ESN model is still able to compete against
the more advanced attention mechanism of Bi-ESN-Att, which we showed to
determine an improvement in accuracy that however, at least on this dataset, is

12 D. Di Sarli et al.

quite limited. Still, the use of Bi-ESN-Att can be of interest even on this kind of
dataset when looking for a more interpretable (and very efficient) model.

While within the limits of an analysis which has been focused on a Question
Classification task, our results show the potential of Reservoir Computing methods
and of their possible evolution. This potential is especially tangible with respect
to the extreme efficiency of these methods, which is increasingly important in
Natural Language Processing contexts that are often characterized by considerable
amounts of data.

As future works, we plan to extend our analysis to more complex tasks in
which an attention mechanism can have a higher impact. Moreover, we would like
to assess the role of multiple recurrent layers as in DeepESN [12/13], which could
provide richer information at different time scales, and of kernels [9], which could
help extract more interesting features from the data. Finally, given the recently
proven effectiveness of large language models for transfer learning [28/10], it
would be interesting to explore how Reservoir Computing approaches can reduce
the huge amount of time required to train these models, both in the case of
training the language model itself, and in the case of training the task-dependent
network.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: 3rd International Conference on Learning Representations,
ICLR 2015, Conference Track Proceedings (2015), http://arxiv.org/abs/1409.0473

2. Bengio, Y., Simard, P.Y., Frasconi, P.: Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157-166 (1994)

3. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings of
a meeting held 12-14 December 2011, Granada, Spain. pp. 2546-2554 (2011)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13, 281-305 (2012)

5. Bianchi, F.M., Scardapane, S., Lokse, S., Jenssen, R.: Bidirectional deep-readout
echo state networks. In: 26th European Symposium on Artificial Neural Networks,
ESANN 2018 (2018)

6. Boedecker, J., Obst, O., Mayer, N.M., Asada, M.: Studies on reservoir initialization
and dynamics shaping in echo state networks. In: Proc. of the 17th European
Symposium on Artificial Neural Networks (ESANN). pp. 227-232. d-side publi.
(2009)

7. Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., Strope, B., Kurzweil, R.: Universal
sentence encoder for english. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2018: System Demonstrations.
pp. 169-174. Association for Computational Linguistics (2018)

8. Cho, K., van Merrienboer, B., Giilgehre, ¢., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empirical

http://arxiv.org/abs/1409.0473

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Question Classification with Untrained Recurrent Embeddings 13

Methods in Natural Language Processing, EMNLP 2014. pp. 1724-1734. ACL
(2014)

Croce, D., Filice, S., Basili, R.: On the impact of linguistic information in kernel-
based deep architectures. In: AT*IA 2017 Advances in Artificial Intelligence -
XVIth International Conference of the Italian Association for Artificial Intelligence,
Proceedings. Lecture Notes in Computer Science, vol. 10640, pp. 359-371. Springer
(2017)

Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http: //arxiv.org/abs/1810.04805

Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state
networks. Neural Networks 24(5), 440-456 (2011)

Gallicchio, C., Micheli, A.: Deep reservoir computing: A critical analysis. In: 24th
European Symposium on Artificial Neural Networks, ESANN 2016 (2016)
Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: A critical experi-
mental analysis. Neurocomputing 268, 87-99 (2017)

Grave, E., Bojanowski, P., Gupta, P.; Joulin, A., Mikolov, T.: Learning word vectors
for 157 languages. In: Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018) (2018)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735-1780 (1997)

Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks — with an erratum note’. Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report (2001)

Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science 304(5667), 78-80 (2004)

Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applica-
tions of echo state networks with leaky-integrator neurons. Neural Networks 20(3),
335-352 (2007). |https://doi.org/10.1016/j.neunet.2007.04.016

Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for
modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, Volume 1: Long Papers. pp. 655-665.
The Association for Computer Linguistics (2014)

Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014. pp. 1746-1751. ACL (2014)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015, Conference Track
Proceedings (2015)

Kirkpatrick, S., Jr., D.G., Vecchi, M.P.: Optimization by simmulated annealing.
Science 220(4598), 671-680 (1983)

Lei, Z., Yang, Y., Yang, M., Liu, Y.: A multi-sentiment-resource enhanced attention
network for sentiment classification. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL 2018, Volume 2: Short Papers.
pp. 758-763. Association for Computational Linguistics (2018)

Li, X., Roth, D.: Learning question classifiers. In: 19th International Conference on
Computational Linguistics, COLING 2002 (2002)

Lin, Z., Feng, M., dos Santos, C.N., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A
structured self-attentive sentence embedding. In: 5th International Conference on
Learning Representations, ICLR 2017, Conference Track Proceedings (2017)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.neunet.2007.04.016

14

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

D. Di Sarli et al.

Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3(3), 127-149 (2009)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (2017),
https://openreview.net/forum?id=BJJsrmfCZ

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models
are unsupervised multitask learners (2019), https://d4mucfpksywv.cloudfront.net/
better-language-models/language-models.pdf

Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-
supervised text classification via mixed objective function. In: AAAT 2019 (2019)

Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Processing 45(11), 2673—2681 (1997)

da Silva, J.P.C.G., Coheur, L., Mendes, A.C., Wichert, A.: From symbolic to sub-
symbolic information in question classification. Artif. Intell. Rev. 35(2), 137154
(2011)

Strauss, T., Wustlich, W., Labahn, R.: Design strategies for weight matrices of echo
state networks. Neural computation 24(12), 3246-3276 (2012)

Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for
deep learning in NLP. In: ACL (1). pp. 3645-3650. Association for Computational
Linguistics (2019)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017. pp. 6000-6010 (2017)

Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental
unification of reservoir computing methods. Neural Networks 20(3), 391-403 (2007)
Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural
networks 35, 1-9 (2012)

Zhao, H., Lu, Z., Poupart, P.: Self-adaptive hierarchical sentence model. In: Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
1JCAI 2015. pp. 4069-4076. AAAI Press (2015)

Zhou, C., Sun, C., Liu, Z., Lau, F.C.M.: A C-LSTM neural network for text
classification. CoRR abs/1511.08630 (2015), |http://arxiv.org/abs/1511.08630

https://openreview.net/forum?id=BJJsrmfCZ
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1511.08630

	Question Classification with Untrained Recurrent Embeddings

