
Practical Exercise
STM32F4 Discovery

Alessandro Palla

alessandro.palla@for.unipi.it

Outline

● STM32F4 Discovery

● Application: USB Mouse with accelerometer

● Hardware Configuration

o Requirements

o Peripherals Selections

 Timer

 GPIO

 SPI

 USB

o Board Pinout

o Clock Selection

o Peripheral Configuration

Outline

● Software Design

o PWM LEDs control

o Interrupt management

o Accelerometer Theoretical Background

 LIS3DSH SPI communication

o USB

● Put All together

● Conclusion

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

● Audio DAC with class D amplifier

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

● Audio DAC with class D amplifier

● USB FS (Full Speed) with micro-USB

connector

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

● Audio DAC with class D amplifier

● USB FS (Full Speed) with micro-USB

connector

● 4 user led (green, blue red and orange)

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

● Audio DAC with class D amplifier

● USB FS (Full Speed) with micro-USB

connector

● 4 user led (green, blue red and orange)

● One user button and one reset

STM32Discovery F4

● STM32F407x Cortex-M4F core, 1MB flash,

192KB RAM, frequency up to 168 𝑀𝐻𝑧
● 3-axis accelerometer

● Omnidirectional MEMS Microphone

● Audio DAC with class D amplifier

● USB FS (Full Speed) with micro-USB

connector

● 4 user led (green, blue red and orange)

● One user button and one reset

● Programmation via USB with ST Link (chip

above)

System Architecture

CPUPC

3 Axis

Accelero

meter

Push

Button

USB SPI

● Single Button USB Mouse

● Controlled by tilts on y and x

axes

● Latency = 10 𝑚𝑠
o It means that CPU has to

polls accelerometer each

millisecond

● Visual feedback using pulsing

led.

o Pulse frequency = 10 𝐻𝑧

LEDs

How it Works

● Tilt is measured by projection of

𝑔 (gravity acceleration vector) on

x and y axes (𝐴𝑥, 𝐴𝑦)

● If 𝐴𝑥, 𝐴𝑦 << 𝐴𝑧

ρ ≈
𝐴𝑥

𝐴𝑧
≈
𝐴𝑥

𝑔

ϕ ≈
𝐴𝑦

𝐴𝑧
≈
𝐴𝑦

𝑔

● For low deviation acceleration of

𝑥 and y axes are proportional to

tilts

System flow

● If 𝐴𝑥 or 𝐴𝑦 is greater than a

threshold, firmware update mouse

cursor position

● Leds blink depending on tilts

direction

Initialization

Read 𝐴𝑥, 𝐴𝑦

𝐴𝑥 > 𝑇ℎ
𝐴𝑦 > 𝑇ℎ

No

Update mouse position

Start led feedback

Wait

10ms

Yes

STM32Cube MX

● Developing starting point

● GPIO configuration

● Peripherals selection

● Clock management

● Peripherals and middleware

configuration

● Power Calculator

● Big number of library (USB

Host and Device, TCP/IP

Stack, SSL, FAT

FileSystem, FreeRTOS

operative system)

First Step: Debug and Clock

● RCC (Real-Time Clock

Control), HSE (High speed

clock) connected to

8 𝑀𝐻𝑧 Crystal

● STLink connected via SWD

(Serial Wire Debug) , a

simplified JTAG

Clock Configuration

Clock Configuration

● Input Crystal Frequency: 8 𝑀𝐻𝑧
● Crystal is more accurate than HSI (High Speed Internal oscillator), so is

suggested to use it in order to improve performances.

● PLL (Phased Locked Loop) is an electronic system that can increase

frequency of signals. In this case 𝑓𝑜𝑢𝑡 = 𝑓𝑖𝑛
𝑁

𝑀 ∗𝑃

● System Clock and HCLK (AHB Bus clock) are set to 168 𝑀𝐻𝑧
● Each APB bus has a different clock speed: 42 𝑀𝐻𝑧 APB1, 84 𝑀𝐻𝑧 APB2

● Indeed timer has greater frequency: 84 𝑀𝐻𝑧 APB1, 168 𝑀𝐻𝑧 APB2

Pulse Width Modulation

● Adjusting duty cycle of signal

we can control it’s average

● If digital signal’s frequency is

greater than system

bandwidth, we can

approximate output with

signal mean

● Can be used also to generate

a fixed duty cycle waveform

Pulse Width Modulation

● All Timer4 channels are connected to LEDs

● Timer4 is connected to APB1 (84 𝑀𝐻𝑧)

𝑓𝑃𝑊𝑀 =
𝑓𝑇𝑖𝑚𝑒𝑟

𝐶𝑂𝑈𝑁𝑇𝐸𝑅_𝑀𝐴𝑋
= 10 𝐻𝑧

𝛿 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑂𝐶𝑅

𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑀𝐴𝑋
= 50% (square wave)

Serial Peripheral Interface

● Full Duplex synchronous serial

data link

● MOSI: Master Out Slave IN

● MISO Master IN Slave Out

USB
● Asymmetric communication: one Host and multiple Devices (up to 127)

● USB can supply embedded devices:

o Voltage supply: 5V

o Current: up to 1A

o Power up to 5W, enough for most embedded devices

● First version of standard (1996): USB 1.0, speed 1.5 Mbit/s

● USB 1.1 introduces USB FS (Full Speed), speed 12 Mbit/s

● USB 2.0 => USB HS (High Speed), theoretical speed of 480 Mbit/s

● STM32F4

o Can be Host, Device or OTG (on-the-go, can switch between Host

and Device)

o It supports both USB FS and HS,

STM32F4 Discovery USB

● Mini USB connector for power supply,

debugging and programming CPU

● Micro USB connector for

communication

● In our application:

o USB Device, PC is the Host

o We don’t need high speed => USB

FS

Discovery USB Schematic

ESD protection and

EMI Filtering for USB

Power Switch for USB

Host

USB HID

● Human Interface Device, a class of USB specification designed to interacts

directly with humans

● A lot of devices can use this technology:

o Mice

o Keyboards

o Game Controller

o Custom Device (driver developing on host side)

● Also other standards have HID class, like Bluetooth (Bluetooth HID, for

wireless mice and keyboards)

● Latency is more important than throughput in those devices.

● Devices communicate with Host send non-periodic reports (later…)

Time Base Generation

● Timer6 has to generate an 10 𝑚𝑠 period time base, and his clock

frequency is 84 𝑀𝐻𝑧.

● Problem n1: How can we generate 100 𝐻𝑧 signal from 84 𝑀𝐻𝑧 one?

● Timer can be configured to generate an interrupt on counter overflow.

● If it counts from 0 to CNT-1, time between 2 interrupts is

𝑡 =
𝐶𝑁𝑇

𝑓𝑐𝑙𝑘
𝐶𝑁𝑇 = 840000

Timer Block Diagram

Time Base Generation

● Problem n2: Timer6 is a 16 bit timer, and 840000 > 65535 (216 − 1)
● Solution: Clock Prescaler!

𝑡 = 𝐶𝑁𝑇 ∗
𝑃𝑆𝐶

𝑓𝑐𝑙𝑘

● Prescaler is also a useful to decrease power consumption

(remember dynamic power consumption: 𝑃𝑑 = 𝐶 ∗ 𝑓 ∗ 𝑉𝑑𝑑
2)

● It also decrease resolution of counter:

o Resolution without prescaler: Δ𝑡 =
1

𝑓𝑐𝑙𝑘

o Resolution with prescaler: Δ𝑡 =
𝑃𝑆𝐶

𝑓𝑐𝑙𝑘

● In STM32F4 register 𝑃𝑆𝐶𝑟𝑒𝑔 = 𝑃𝑆𝐶 − 1

Software design flow

● Software Design

o PWM LEDs control

o Interrupt management

o SPI

 LIS3DSH Register Map

o USB HID

● Put All together

● Conclusion

Led Blinking

● Cube Software has already initialize selected peripherals, so user don’t

need to do it

● Two simple function to start/stop PWM:

o HAL_TIM_PWM_Start

o HAL_TIM_PWM_Stop

● Parameters:

o TIM_HandleTypeDef* htim: a pointer to a Timer Structure, you can

find it’s declaration in tim.c

o uint32_t Channel: a macro (defined in STM32F4xx_hal_tim.h) to

select channel. TIM_Channel_x, where x goes from 1 to 4

Interrupt management

● HAL_TIM_Base_Start_IT(&htim6); starts Timer6 in interrupt mode.

● How we can personalize ISR (Interrupt Service Routine) in order to

perform required task?

IRQ Handler

● Clear pending IRQ

● Call Timer ISR

Timer6 Counter

Overflow Interrupt

Timer ISR

● Check interrupt type

● Call Specific ISR

defined as __weak

__weak void ISR(){

}

ARM __weak keyword

● A weak function can be redefined in another source code

● If linker find two function with the same name, it uses the one without weak

keyword. It is useful to separate application from drivers

● main.c

driver.c

● Timer callback function is HAL_TIM_PeriodElapsedCallback

//user callback at application

//level

void callback(){

//do stuffs

}

void ISR(){

//previous stuff

callback();

}

//unused function

__weak void callback(){

}

Accelerometer background

● Measure: displacement of mobile mass change a capacitance of the two

electrode

●
𝑉
𝑢

𝑉
=

𝑥

𝑑
0

o 𝑉 = Drive voltage

o 𝑥 = Displacement

o 𝑑0 = Rest distance

between electrode

Elastic element

Accelerometer in real world

• Simple 1-axis accelerometer in

this example

• Capacitors

Accelerometer in real world

• Simple 1-axis accelerometer in

this example

• Capacitors

• Spring

Accelerometer in real world

• Simple 1-axis accelerometer in

this example

• Capacitors

• Spring

• Mobile Mass

Just a little bit more...
● Relation between displacement and acceleration

● 𝐹𝑡𝑜𝑡 = 𝑚𝑎 = 𝑚 𝑥
● 𝐹𝑡𝑜𝑡 = 𝐹 − β 𝑥 − 𝑘𝑥 = 𝑚 𝑥 (𝐹 = 𝑚𝑎)

o 𝐹𝑛 = Force applied by acceleration

o β = Viscous friction coefficient

o 𝑘 = Elastic coefficient

Second order differential equation in x(t) Laplace!

● 𝑥 𝑠 =
 𝐹 𝑚

𝑠2+
β

𝑚
𝑠+

𝑘

𝑚

● If 𝑠 << 𝜔0 x =
𝐹

𝐾
Hooke Law

● Second order Low Pass filter

o 𝜔0 =
𝑘

𝑚
, 𝑄 =

𝑘𝑚

β

Noise

● Strength components: 𝐹 = 𝑚𝑎 + 𝐹𝑛
o 𝑎 is the MEMS acceleration
o 𝐹𝑛 is the force caused by Brownian mote of air, this is a noise source

𝐹𝑛 ≈ 4𝐾𝐵𝑇β

System Sensitivity:

𝐺0 =
1

𝜔0
2

We can report this noise to a “noise acceleration” dividing noise’s displacement

by sensitivity:

𝑎𝑛 =
𝐹𝑛

𝐾
𝐺0

−1 =
4𝐾𝐵𝑇

𝑚𝑄
𝜔0

Great bandwidth increase input noise

Dynamic Range

Dynamic Range: 𝐷𝑅 = 20 log(
𝑎𝐹𝑆

𝑎𝑛
)

Example: LIS3DSH

• 16 bit 𝐷𝑅 = 20 log 216 = 96.3 𝑑𝐵
• If FS bit is set to 000, 𝑎𝐹𝑆 = ±2 𝑔 = 4 𝑔

• Input noise: 𝑎𝑛 =
4 𝑔

216
≈ 0.061 𝑚𝑔

Our Application

Requirements:

• 𝜔0 = 100 𝐻𝑧,

• 𝑎𝐹𝑆 = ±2 𝑔
• Resolution 8 bit (USB HID)

Derived Specifications:

• Anti-aliasing filter: 𝑓𝐿𝑃 ≤ 50 𝐻𝑧
• Truncation of 16 bit registers to 8 bit. We have to read only Most Significant

Byte

How to send and receive data from accelerometer?

SPI Communication

Steps:

• Put CS low

• Send register address. MSB is 1 for read or 0 for write operation

• Receive/Send a byte

• Put High CS

HID Report

HID USB Report Structure

● Defines structure of USB report and

data fields

● Crazy to understand

● Standard descriptor (usually supported

by Operative Systems) are provided by USB consortium.

Bit 8 Bit 2 Bit 1 Bit 0

Byte 0 Unused Center Right Left

Byte 1 X Axis

Byte 2 Y Axis

Byte 3 Unused

Send Report

Very simple using ST USB Device Middleware

if((HID_Buffer[0] != 0) |(HID_Buffer[1] != 0) ||(HID_Buffer[2] != 0)){

USBD_HID_SendReport(&hUsbDeviceFS, HID_Buffer, 4);

}

