Embedded Systems

Design using CPU

Alessandro Palla

PhD student in

Embedded System Design
alessandro.palla@for.unipi.it

Slides and other stuffs

Website: http://for.unipi.it/alessandro palla/

You can find there (maybe)

e Today’s slides (Theoretical lesson)
e Tomorrow’s slides (Practical lesson)
e Link to some datasheet

o Cortex M4

o STM32F4

o STM32F4Discovery Board

o LIS3DSH (Accelerometer)

http://for.unipi.it/alessandro_palla/

Lessons Outline

e Short seminario on STM32F4 Embedded CPU. Theory and simple
example
e Today
o Challenges and Constraints designing an embedded system using a
CPU
o STM32F4 Introduction
Cortex M4 CPU
m Simple approach to Thumb Instruction Set

O

o Memory Model
o AMBA Bus

o Clock

O

NVIC

Outline (...continue)

o Power Management
o DMA
o Timer

e Tomorrow
o Simple application development: USB Mouse controlled by g
acceleration.
o How it works? When user tilts the board, accelerometer detects it and
change mouse pointer’s position on PC screen.
o Developing and testing application on STM32F4-Discovery board

Software for Tomorrow

e Unfortunately we have only one developer board :(
e You can follow software developing by download two software (not
mandatory)
o STM32Cube MX
o |AR Embedded Workbench -> Kickstarter Edition (free)

If you have a STM32F4Discovery board you can take it!!

Embedded System

e Embedded computing systems

o Computing systems embedded within
electronic devices

o Hard to define. Nearly any computing
system other than a desktop
computer

o Billions of units produced yearly,
versus millions of desktop units

o Perhaps 50 per household and per
automobile

Computers are in here... s
\', .
N

and here...

and even here... %

; ””:; »'i; ;

. ”J, ”". ”J, ’“', .
| “‘n "““i‘.; :”“i'.; "““’:.‘; "“"‘i.; - -

rraiir !" \”” """""" P Y e T U

Lots more of these,
though they cost a lot
less each.

Short list of em

systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems

Battery chargers
Camcorders

Cell phones

Cell-phone base stations
Cordless phones

Cruise control

Curbside check-in systems
Digital cameras

Disk drives

Electronic card readers
Electronic instruments
Electronic toys/games
Factory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Modems

MPEG decoders
Network cards

Network switches/routers
On-board navigation
Pagers

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions

Temperature controllers
Theft tracking systems
TV set-top boxes

VCR’s, DVD players
Video game consoles
Video phones

Washers and dryers

bedded

Common characteristics of

embedded systems

e Single-functioned
o Executes a single program, repeatedly
e Tightly-constrained
o Low cost, low power, small, fast, etc.
e Reactive and real-time
o Continually reacts to changes in the system’s environment
o Must compute certain results in real-time without delay

Design Example: digital

camera

CCD

CCD preprocessor Pixel coprocessor D2A
| 5| A2D —>

- v v ¢

JPEG codec Microcontroller Multiplier/Accum

Digital camera chip

U

A

DMA controller Display ctrl

v v
v v v y

Memory controller ISA bus interface UART LCD ctrl

— v §

e Single-functioned -- always a digital camera
e Tightly-constrained -- Low cost, low power, small, fast
e Reactive and real-time -- only to a small extent

Optimizing design metrics

e Obvious design goal:

o Construct an implementation with desired functionality
e Key design challenge:

o Simultaneously optimize numerous design metrics
e Design metric

o A measurable feature of a system’s implementation

o Optimizing design metrics is a key challenge

Design Metrics

Common metrics

©)

O O O O

Unit cost: the monetary cost of manufacturing each copy of the
system, excluding NRE cost

NRE cost (Non-Recurring Engineering cost): The one-time monetary
cost of designing the system

Size: the physical space required by the system

Performance: the execution time or throughput of the system

Power: the amount of power consumed by the system

Flexibility: the ability to change the functionality of the system without
incurring heavy NRE cost

Design Metrics

e Common metrics (continued)
o Time-to-prototype: the time needed to build a working version of the
system
o Time-to-market: the time required to develop a system to the point that
it can be released and sold to customers
o Maintainability: the ability to modify the system after its initial release
o Correctness, safety, many more

Metrics Trade-Off

Power T e Expertise with both software
and hardware is needed to
Derformance | Sige optimize design metrics

o Not just a hardware or

software expert, as is
lNRE cost common

e A designer must be comfortable

with various technologies in
order to choose the best for a
given application and
constraints

Digital camera chip

O.ﬁ_,-——»‘:_\zl) CCD pr CE o;essi

lens
JPEG codec Microco‘

DMA controller
2 s s
Memory controller ISA bus interface UART

Hardware

Software

General-Purpose Processor

General-Purpose Processor

O
O

o O

Processor designed for a variety of computation tasks
Low unit cost, in part because manufacturer spreads NRE over large
numbers of units

m Motorola sold half a billion 68HC05 microcontrollers only in 1996
Carefully designed since higher NRE is acceptable
Can yield good performance, size and power
Low NRE cost, short time-to-market/prototype, high flexibility

m User just writes software; no processor design

m No need of complex hardware design, fast prototyping and error

detection

Case Study: STM32F4

High performance embedded CPU using a Cortex M4 core

Low cost development board (STM32F4Discovery costs approx 109)
Well documented

Lots of feature and peripherals

M in Cortex M4 means “Microcontroller”. CPU designed for embedded
systems that not requires too much computing power.
Others Cortex family:
o R: Realtime CPU, suitable for deep embedded real-time systems.
o A: Application CPU, generic high performance processor

STM32F4
Also for DSP
ARM Single precision FPU %applications
Ease of use

Better code efficiency

Py iy ==_ Faster time to market
Cortex Eliminate scaling and saturation
Low-Rower Leadership from ARM Easier support for meta-language tools
(Matlab...)

MCU

Ease of use of C

DSP

Harvard architecture
Single-cycle MAC

programming
Interrupt handling
Ultra-low power

Cortex-M4

Barrel shifter

Key Features

Real-time
performance

Cortex-M4 with F
168 MHz/210 DMIPS

Outstanding
power
efficiency

.

<1pAV,,, RTC,

Ultra low dynamic
consumption,
1.7t036VYV

Superior and
innovative
peripherals

Faster peripherals,
2 full duplex I2S,
RTC with
sub second accuracy

Maximum
integration

1 MByte Flash,

192-Kbyte SRAM. ..

Extensive
tools and
software

CMSIS DSP library,
Matlab support,

various |DE starter kits,

RTOS,and stacks

S TMicroelectronics

e One of the world top important productor of Electronics Devices ‘ ’

o Embedded CPU
o MEMS Sensor elelininise
m MEMS means Micro-Electro-Mechanical-System, a sensor built in
silicon into a chip to reduce dimension, costs and reliability
m Example:
e Microphone
e Accelerometer, Gyro, Inertial Modules
e Pressure Sensors and so on...
o RFIC (Radio Frequency Integrated Circuit)
o OPAMP and other analog electronics
O ecC...
e An ltalian-French company

LRI ICIC LR 23S

-

Example of MEMS
Accelerometer

Embedded into a chip, note
the scale!

*x135 3 .00kKU 4mm
#______ 19.03.2010 SDCSP1

1024 = 1024 Ug.TIF

CPU Structure

e Von Neumann
o Fewer memory wires

e Harvard
o Simultaneous program and

Processor Processor

data memory access

4 A 4 A 4

. Program Data memory Memory
e |n Harvard architecture CPU can memory (program and data)
access simultaneously both in
program and data memory Harvard Von Neumann

e Cortex M4 has Harvard structure
in order to improve CPU speed

Memory Model

e Program is stored in a flash memory,
data in a volatile memory like SRAM

Processor

e |-bus: This bus is used by the core to 1 : t
5 - |
fetch instructions. l-bus ID-bus | S-bus
e S-bus: This bus is used to access \/
data located in a peripheral or in v N
Program Data memory
SRAM memory
e D-bus: This bus is used by the core Internal/External
. Internal Flash volatile memory
for literal load and debug access. (SRAM., SDRAM..)

Harvard

Cortex M4 Structure

Key Concept: from processor
point of view everything is
memory space!

o Data Memory

o Program Memory

o Peripheral registers

CPU access to memory only
using LOAD and STORE
instruction
o RISC (Reduced Instruction
Set Computer) paradigm

\ 4

\ 4

Cortex-M4
processor Optional FPU
Optional Optional
— WIC —p NVIC (=P Processor <4» Embedded
core Trace Macrocell
v 3
y
D-bus Optional Ooti ‘ _ Optional
< » ptional Memory i
<+ » Debug protection unit Serial Wire
Access Port viewer
' 3 A A
v v
Optional Optional
Flash Data
patch watchpoints
v L i
Bus matrix
Code SRAM and
interface peripheral interface
4 Y
v v
I-bus S-bus

Memory Map

32 bit memory space (4 GB), byte-addressable,

little endian: 5z | e |
Not everything of this space is available from user’
s application
Code
Internal SRAM
External SRAM
Peripherals
o External Device
Every peripheral is mapped into a specific
address
Depending of MSB bits of address bus arbiter
selects which memory should be read/write

O O O O

Private peripheral

OXFFFFFFFF

0xE0100000
OXEQOFFFFF

OXE0000000
OXDFFFFFFF

0XA0000000
OXOFFFFFFF

0x60000000
OXSFFFFFFF

0x40000000
OX3FFFFFFF

0x20000000
OX1FFFFFFF

0x00000000

Multi AHB bus matrix

Using Bus matrix multiple bus
master can perform
simultaneously operation on
different memory.

SB OTG

64-Kbyte ARM GP Gp [MAC
CCM data RAM Cortex-M4 DMA{1 DMA2 | [Ethernet HS

3 b=
(/Jl
I
o1}
(]
=

DMA_MEM2

Bus matrix-S

Multi AHB bus matrix

e Using Bus matrix multiple bus
master can perform
simultaneously operation on
different memory.

e For example in the same clock

cycle:
o CPU can fetch instruction
from Flash

64-Kbyte ARM GP Gp_|[VAC Jossota
CCM data RAM Cortex-M4 DMA{1 DMA2 | [Ethernet HS
—| = sl s
g’\ 2 - 0‘\ = g & - (/;\
2 2 =2 w w | w T
= 8l o 2|5 3 g g I
I I I I
[a] [a] E
| | | ICODE
| | lash
DCODH © | | memory
7 J [112 Kbyte
] 16 Kbyte
I I eripherals |——APB1
I
J 1 eripherals mm
— FoMC
r [T T tatic MemcCtl

Bus matrix-S

Multi AHB bus matrix

e Using Bus matrix multiple bus

ERIEF CEN (e R | | | P

simultaneously operation on 4 el J& F =

different memory. 11819 4% § ¢

e For example in the same clock e

cycle: | | EL w1 i

o CPU can fetch instruction JI | _
from Flash] J t:f—‘—L (2 Kove

o CPU can read/write data | [— || —
from SRAM e

Multi AHB bus matrix

Using Bus matrix multiple bus
master can perform
simultaneously operation on
different memory.
For example in the same clock
cycle:
o CPU can fetch instruction
from Flash
o CPU can read/write data
from SRAM
o DMA can transfer data from
two different peripherals

64-Kbyte ARM
CCM data RAM Cortex-M4

GP

G |[MAC
DMA1 DMA2 | |Ethernet

SB OTG
HS

\

I-bug_

D-bus

2
9]

DMA_PI

DMA_MEM1
DMA_MEM2

{

HTHERNET M

USB_HS M []

ICODE

DCODH 3
<

T

SaEE

t:%_l_L

—<

O

I T T
Bus matrix-S

T

eripherals

FSMC
tatic MemCtl

Multi AHB bus matrix

e Using Bus matrix multiple bus
master can perform o | I | e s
simultaneously operation on)
different memory.
ICODE

e For example in the same clock
| | |
|) DCODE§ melﬁfgry
| i |
|
[
.

SB OTG
HS

I-bug_
D-bus

|
|

DMA_PI

2
9]

=
[2)
I
fai]
(2]
o

DMA_MEM1
DMA_MEM2
HTHERNET M

L]

from Flash
o CPU can read/write data
from SRAM 4
o DMA can transfer data from
two different peripherals

cycle:
Sass =

o CPU can fetch instruction A

O

FoMC
I tatic MemCtl

Bus matrix-S

Multi AHB bus matrix automatically manages
access arbitration between masters

Flash memory latency

e Flash memory is perfect to store non-volatile data like program’s code,
static data etc... but is typically much slower than SRAM!
e CPU can't fetch instruction before Flash latency time.
o Es: fClk =168 MHz, TClk ~ 6 ns
o Flash latency in clock cycle = roor(Tr’ﬂash I'T,)

e Flash latency time depending on
o Supply voltage: low voltage increase latency time
o Flash size: big flash has bigger parasitic capacitance
m remember delay in CMOS:
Tdelay~ I:{on-mosfet ’ Cp

m Second order effect, voltage scaling is more important

Walit states

Table 10. Number of wait states according to CPU clock (HCLK) frequency
(STM32F405xx/07xx and STM32F415xx/17xx)

HCLK (MHz)
Wait states (WS) Voltage range
(LATENCY) Voltage range Voltage range Voltage range BV 21V
27V-36V 24V-27V 21Vv-24V Prefetch OFE
0 WS (1 CPU cycle) 0 <HCLK= 30 0<HCLK=24 0<HCLK =22 0<HCLK=20
1WS (2 CPU cycles) 30 < HCLK =60 24 < HCLK= 48 22 <HCLK =44 20 <HCLK =40
2 WS (3 CPU cycles) 60 < HCLK =90 48 < HCLK= 72 44 <HCLK< 66 40 < HCLK= 60
3 WS (4 CPU cycles) 90 < HCLK =120 72 < HCLK= 96 66 < HCLK = 88 60 < HCLK= 80
4 WS (5 CPU cycles) 120 < HCLK < 150 96 < HCLK= 120 88 < HCLK= 110 80 < HCLK= 100
5 WS (6 CPU cycles) 150 < HCLK < 168 120 <HCLK =144 | 110 < HCLK= 132 100 < HCLK= 120
6 WS (7 CPU cycles) 144 <HCLK =168 | 132 < HCLK= 154 120 < HCLK= 140
7 WS (8 CPU cycles) 154 <HCLK < 168 140 < HCLK= 160

ART Accelerator

e Adaptive Real-Time memory

_ Core ART Accelerator momory
Accelerator: a proprietary
(STM) hardware block B S oy R |

designed to reduce wait wnpenfion e
128-bit @ 128-bit @ 128-bit § 128-bit
128-bit 128-bit @ 128-bit W 128-bit

states in flash read access. e

" 128-bit J§ 128-bit § 128-bit § 128-bit
L 758 bit § 128-bit § 128-bit § 128-bit

e Flash memory is organised in e

128-bit § 128-bit § 128-bit § 128-bit
128-bit @ 128-bit § 128-bit § 128-bit

128-Dbit blocks, up to 8 b e e
instruction-block using Thumb L
instruction set (16 bit x instr.) .
e ART works like a cache memory. Using prefetch of next instruction theoretically
it reduces to 0 wait states in sequential statements.
e For non-sequential instruction (like branch, call etc...) the penalty in terms of
number of cycles is at least equal to the number of wait states
e A dynamic branch prediction system is used to improve performances

128-bit
128-bit
128-bit

Cortex M4 Register Map

13 General purpose register

o Attention! in order to use 16
bit instruction, not all GP
register can be used for all
instruction

Low registers <

High registers <

N
Stack Pointer

Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

R7

R8s

R9

R10

R11

R12

General-purpose registers

SP (R13)

PspP* H MsP* *Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Program status register
Exception mask registers Special registers

CONTROL register

Example: ADD/SUBTRACT

This instruction can do:

Rd = Rs + Rn
Rd = Rs + Offset3 s 4 18 2 B W e 8 7T &6 5 4 3 2 1 o
00 0 1 1 I § Op | Rn/Offset3 Rs Rd
e 5 bit opcode
e flag for immediate operand, 3 bit
e 3 bit register, from RO to R7 [Destination register
For more than 3 bit sum: it
MOV Rn,#num a0
SUM Rd,Rs,Rn
e Same code size 32 bit Instruction
set

e 2 clock cycle

Thumb Instruction Set

32-bit normal Instruction

Thumb instructions in general requires _ _ _ _

) . : | 20-bit | 4-bit | 4-bit | 4-bit |
more code than 32 bit RISC instruction ~ " "~ ° " Accessibility to 16 registers
set. [7-bit [3-bif 3-bi] 3-bif

e More instruction for the same code Fewer opcodes Accessibility to only 8 registers
that decreases performance of CPU

e Otherwise Thumb increases code density
o Example: only 16 bit instruction size for simple increment like
i++ => ADD RO,RO0,#1

e Thumb code is typically 65% of ARM 32 bit code (infocenter.arm.com)
ARMY7 and other high end processors can use both Thumb and ARM 32 bit
instruction sets

http://infocenter.arm.com

Cortex M4 Register Map

e SP: Stack Pointer RO

R1

e PC: Program Counter &

e LR: Link Register, the register Low registers g Ra

R5

that ContaInS return addreSS fI’Om R6 General-purpose registers

R7

PC when Branch and Link (BL) e

R9

instruction is executed High registers < R10

R11
R12

) - —

Stack Pointer SP (R13) PSP* H MSP* *Banked version of SP

Exam P le: Link Register LR (R14)

.main Program Counter PC (R15)

BL func ; branch to func label o _ PSR Program status register

; after BX CPU execute this instruction PRIMASK
FAULTMASK Exception mask registers Special registers
func BASEPRI

; do stuffs CONTROL CONTROL register
BX LR ; branch to LR register value

Clock

e Three different clock sources can be used to drive the system clock
o HSI oscillator clock (high-speed internal clock signal)
o HSE oscillator clock (high-speed external clock signal)
o PLL clock
e Device has also two secondary clock sources
o 32 kHz low-speed internal clock
o 32.768 kHz low speed external crystal
m This two clock can be used to drive Real-Time Clock
m 2" =32768, so if this clock feed a 16 bit timer his MSB toggle
every second

External Clock

Figure 15. HSE external clock Figure 16. HSE crystal/ceramic
resonators

Hardware configuration
Hardware configuration STM32F

OSC_IN OSC_OuT OSC_IN OSC_OUT

(Hi-2)

External source

ai14369

ai14370a

e With crystal/ceramic resonator in range from 4 to 26 MHz
e Using an external source. It can have a frequency from 1 to 50 MHz

Select System Clock

HSI RC System Clock Mux
" HSI |
L —9 — e
16 MHz ,
HSE SYSCLK (MHz)
[« * > > 168 =
PLLCLK
PLL Source Mux S
HST [N\ A
' —[—# Enable CSS
Input frequency /8 Vg BRI A WA v
- HSE
- ﬁ; HSE ©] /M *N /P

Main PLL

Other derived clock

> 168 Ethernet PTP clock (MHz)

a HCLK to AHB bus, core, memory
> 168
and DMA (MHz)

/8 > 21 To Cortex System timer (MHz)

» 168 FCLK Cortex clock (MHz)
SYSCLK (MHz) AHB Prescaler HCLK (MHz) APBL1 Prescaler

> 168 —% /1 v — 168 [¥¥» /4 T > 42 APBL1 peripheral clocks (MHz)
Z Z max

168 MHz max
> X2 —» 84 APB1 Timer clocks (MHz)
APB2 Prescaler

—>ul2 M _ﬁ 84 APB2 peripheral clocks (MHz)
O 1ax

—» X2 — 163 APB2 timer clocks (MHz)

e APB1 and APB2 are peripheral lower speed buses

e Usually peripherals don’t need to go at maximum speed, so decrease clock
frequency can save power.

e Prescalers can be changed runtime, like clock frequency

Nested Vectored Interrupt

Controller

e Nested Vectored Interrupt Controller (NVIC) provides configurable interrupt
handling abilities to the processor.
o Up to 91 maskable interrupt
o Facilitates low-latency interrupt handling
o Controls power management

e Three levels of priority:
o Interrupt Number
o Preempt Priority
o Subpriority

Position Number

Position number is fixed and set by
design

Rule: interrupt handler with lower
priority/position number is prioritary to
others

Tamper and TimeStamp interrupts

2 2 settable | TAMP_STAMP through the EXT line 0x0000 0048
3 | 10| setasble |RTC_WKUP i 0x000D 004C
- 1 settable | FLASH Flash global interrupt 0x0000 0050
5 12 settable [RCC RCC global interrupt 0x0000 0054
] 13 settable | EXTIO EXTI Line0 interrupt 0x0000 0058
7 14 settable | EXTI1 EXTI Line1 interrupt 0x0000 005C
8 15 settable | EXTI2 EXTI Line2 interrupt 0x0000 0060
o 16 settable | EXTI3 EXTI Line3 interrupt 0x0000 00584
10 | 17 settable |EXTH4 EXTI Line4 interrupt 0x0000 0088
1" 18 settable |DMA1_Stream0 DMA1 Stream0 global interrupt 0x0000 006C

é g Type of Acronym Description Address
g E priority Y P
- - Reserved 0x0000 0000
-3 fixed Reset Reset 0x0000 0004
Non maskable interrupt. The RCC
-2 fixed NMI Clock Security System (CSS)is linked 0x0000 0008
to the NMI vector.
-1 fixed HardFault All class of fault 0x0000 000C
0 settable | MemManage Memory management 0x0000 0010
1 settable | BusFault Pre-fetch fault, memory access fault 0x0000 0014
2 settable | UsageFault Undefined instruction or illegal state 0x0000 0018
R R) Reserved 0x0000 001;: -0x0000
3| setable |Svcal System service callvia SWI 0x0000 002C
= settable | Debug Monitor Debug Monitor 0x0000 0030
- - - Reserved 0x0000 0034
5 settable | PendSV Pendable request for system service 0x0000 0038
6 settable | SysTick System tick timer 0x0000 003C
0 7 settable |WWDG Window Watchdog interrupt 0x0000 0040
1 | a| settable [PvD ;Yem':’”gh EXTlline detection 0x0000 0044
2 | 9| settable |TAMP_STAMP :;:’z; l"‘: ;‘(";ﬁ:ﬁ:" intermupts 0x0000 0048

How interrupt prlorlty works

13 settable | EXTIO EXTI Line0 interrupt

e |t's easy to understand using examples: 14| semsme | XTI Line! interupt
o EXTIO number = 13, EXTI1 number = 14

Case 1: EXTIO and EXTI1 pending, same preemption and subpriority

e CPU executes highest
?& priority interrupt

How Interrupt priority works

6 13 settable | EXTIO

EXTI Line0 interrupt

7 14 settable |EXTI

EXTI Line1 interrupt

Case 2: EXTIO and EXTI1 pending, same preemption and but different
subprioroty: 1 for EXTIO and O for EXTI1

e User can change
i& priority interrupt using
mmmmmmmmmmm » o subpriority

How Interrupt priority works

6 13 settable | EXTIO EXTI Line0 interrupt

7 14 settable |EXTI EXTI Line1 interrupt

Case 3: EXTIO interrupt request while EXTI1 is running, same preemption and
subpriority

&To Interrupt service routine

T % (ISR) can be
preempted only from
interrupt with higher

ﬁ preemption priority

How Interrupt priority works

6 13 settable | EXTIO

EXTI Line0 interrupt

7 14 settable |EXTI

EXTI Line1 interrupt

Case 4: EXTIO interrupt request while EXTI1 is running, same subpriority but
different preemption: O for EXTIO and 1 for EXTI1

EXTIO

5 In that case EXTIO has
greater preemption

priority than EXTI1

Priority

e Stm32 has 4 bits of priority, 16 priority levels
e User can select how much of this 4 bits are for preemption priority and how
much is for subpriority

e Example: 2 bits for preemption and 2 bits for subpriority
o In this case we can have 4 levels of preempted ISR and 4 for
subpriority
e Another Example: O bit for preemption and 4 for subpriority
o No-preemptible ISR

Interrupt Priority Summary

The preempt priority level defines whether an interrupt can be serviced
when the processor is already running another interrupt handler. In other
words, preempt priority determines if one interrupt can preempt another

The subpriority level value is used only when two exception with the
same preempt priority level are pending. The exception with the lower
subpriority will be handled first.

The position number level value is used only when two exception with the
same preempt priority and subpriority are pending. The exception with the
lower position number will be handled first.

Power Management

e Power consumption is one of the most important constraints in portable
embedded device.
e STM32F4 provides several low-power mode
o Sleep mode (CPU core stopped)
o Stop mode (all clocks are stopped)
o Standby mode (disable 1.2V power supply, lost of volatile data)
e |n addition user can reduce power consumption in run mode
o Slowing down system clock
o Disable peripherals clock when they are unused

Sleep Mode

Sleep Mode Description
Mode entry WEFI or WFE special instruction
Mode Exit e Interrupt if WFI was used

e Eventif WFE was used

Latency None

e In sleep mode only CPU clock is stopped.
e To enterin this mode user can call special instruction
o WEFI (Wait for Interrupt) => wake CPU on any interrupt configured.
o WEFE (Wait for Event) => wake CPU on any event. Event is generated
by EXTI peripherals (see documentation or TODO)

Stop Mode

Stop Mode Description
Mode entry WEFI or WFE instruction plus configuration of some register
Mode Exit e EXTI lines configured in Interrupt mode if WFI was used

e EXTI lines configured in Interrupt mode if WFI was used

Latency Oscillator startup time

e In stop mode all clock are stopped. Voltage is still on
e User can decide to keep active few low consumption peripherals like RTC,
Watchdog and low frequency oscillator (for RTC and Watchdog)

Standby Mode

Stop Mode Description

Mode entry WEFI or WFE instruction plus configuration of some register

Mode Exit Rising edge on WKUP pin, external reset, RTC or Watchdog
reset

Latency Oscillator startup time

e In standby mode device disabled 1.2V regulator. All non volatile data was
lost!!
e After waking up from standby, program execution restarts in the same way

as after a Reset!
e User can decide to keep active few low consumption peripherals like RTC,

Watchdog and low frequency oscillator (for RTC and Watchdog)

Reset Circuit

— Vbo/Vbba
% Rpy
E;;t:(rer;al < ’| Filter » System reset
NRST
Pulse WWDG reset
—— IWDG reset
] |‘_ ggnezrgtor Power reset
(min 20 ps) Software reset

77 Low-power management reset

DMA

e Direct memory Access(DMA) is used in order to provide high-speed data
transfer between peripherals and memory and between memory and
memory.

e Data can be quickly moved by DMA without any CPU action.

e This keeps CPU resources free for other operations

e Three modes:
o Memory-to-Peripheral
o Peripheral-to-Memory
o Memory-to-Memory

DMA

e DMA read data from Memory and
place it to Peripheral destination

DMA controller
address. —

e |t automatically increments [o ===y,
source/destination address to e
perform multi-byte transfer, also =
in circular mode (i = (i+1)%N)

e 8 stream can be performed) ==y
simultaneously, coordinated by a (cesinaen
bus Arbiter depending on stream
priority

e DMA transfer can be triggered
both by software or peripherals.

DMA Example
| B -

BUS |
Bridge |V E—

< >

Peripheral-to-memory

Peripheral to memory
transfer controlled by CPU

Example:
Transfer data array from SD
card to memory

Peripheral-to-memory

Peripheral to memory
transfer controlled by
peripheral

Example:
USB data transfer

Memory-to-memory

Memory to memory transfer.

Example: o

Non blocking memcpy -

During memory transfer I ¥

CPU is free to do other . [, [

stuffs . : T R

Timer

16-bit Counter

Up, down and centred counting modes

Auto Reload

4 x 16-bit Capture/Compare Channels
o Programmable channel direction:

input/output

o Input Capture, PWM Input Capture Modes
o Output Compare, PWM, One Pulse Modes

Independent IRQ/DMA Requests:

o At each Update Event

o At each Capture Compare Events
o At each Input Trigger

ETREE e
ITR 1 Trigger/Clock

ITR 3

ITR 2 - Trigger OutEut
—————

= Controller

L
‘ 16-Bit Prescaler ‘

| Auto Reload REG
| +/- 16-Bit Counter

CH1[P>

|
|
cH2[]+ L‘_L |
Capture Compare

CH3[™

CH4[>

—{ P> CH1
—{ > CH2
—{ > CH3
-]-» CH4

Clock Selection

e Clock can be selected from 2 sources
o Internal clock TIMXCLK provided by
the RCC TIMxCLK
o External pin ETR
e Timer Trigger can be r
o Internal trigger input 1 to 4: 17 L i Pslr & e
m ITR1/ITR2/ITR3/ITR4 TR2 , -
m Using another timer as a Tha = o i i
prescaler : R
o External Capture Compare pins TioFP2 —>)
m Pin1: TMFP1or TMF_ED
m Pin 2: TI2FP2

o External pin ETR

Counting Modes

3 Counting Modes:
e Center Aligned
e Up counting
e Down Counting

All three mode have the same update-event interrupt period

i Center Aligned Up counting Down counting

MWW NN

A RS NI o4t

v

Output Compare

The Output Compare is used to control an output waveform or indicate when a
period of time has elapsed.
e \When a match is found between the capture/compare register and the

counter:
o The corresponding output pin is assigned to the programmable Mode,
it can be:

m Set/Reset/Toggle

m Remain unchanged
o Generates an interrupt if the corresponding interrupt mask is set
o Send a DMA request if the corresponding enable bit is set

Output Compare

TimerClock + ™ 1 rm 1 1 LI LI Lo
Interrupt Interrupt
XN\
OC*1 | !
New CCR1

CCR1

PWM

e The PWM mode allows to generate 4 independent signals.
e The frequency and a duty cycle determined as follow:
o One auto-reload register to defined the PWM period.
o Each PWM channel has a Capture Compare register to define the duty
cycle.
e There are two configurable PWM modes:
o Edge-aligned Mode
o Center-aligned Mode

Edge-aligned Mode Center-aligned Mode
Timer Clock ‘Mm_mm Timer Clock ‘j_|_|_|_|_|_|_|_|_|_|—|_|—|_|—|_|—l_|_|_|—l_l_|_|_‘

Update

AutoReload t---------------- -----Evemt-- oo AutoReload
Capture Comparg™~""" """ttt Capture
Compare

OCx 1] R OCx

Synchronization

Timers can be linked together for synchronization pourposes
1) Cascade Mode: TIM1 used as master timer for TIM2, TIM2 configured as
TIM1 slave and master for TIM3

MASTER

Timer 1
CLOCK l

Update | Controller
A)) o
counter SLAVE /MASTER

Timer 2

Trigger

" Controller
SLAVE
mer

ITRI

ITR2 |
2 +| prescaler |—D[counter |
ITR 4

Synchronization

2)

One Master several slaves: TIM1 used as master for TIM2, TIM2 and
TIM4.

MASTER
l Timer 1 SLAVE 1
CLOCK 5
: Timer 2
prescaler Trigger TRG1 ITR1 .
Update | Controller ITR 3
—> —b{ prescaler H counter ‘
SLAVE 2
Timer 3
ITR 1
ITR 2 { H :
— prcacaler counter
ITR 4
—
SLAVE 3
e TIM4
ITR 2

ITR 3

—>{ prescaler H counter

Synchronization

3) Timers and external trigger synchronization: TIM1, TIM2 and TIM3 are
slaves for an external signal connected to respective Timers inputs.

TIMA TiM2 TiM3

> Trigger 1RGO|
Controller

] Trigger 1RGO
Controller

»| Trigger 1RGO
Controller

\4
v

Yy
LA 4

External Trigger

RTC: Real Time Clock

Clock sources

(@)
@)

@)

32.768 kHz dedicated oscillator (LSE)
Low frequency (32kHz), low power
internal RC(LSI)

HSE divided by 128

3 Event/Interrupt sources

O
O
O

Second

Overflow

Alarm (also connected to EXTI Line
17 for Auto Wake-Up from STOP)

HSE OSC

LSIRC — |
©
a

LSE OSC or EXT Clock _I

RTC Alarm

RTCSEL
[1:0]

!

RTC Prescaler

?

RTC Counter [«

!

Backup Domain

RTC Control Register (CR)

Y v A\ 4
Alarm IT Overflow IT Second IT

