
Embedded Systems
Design using CPU

Alessandro Palla
PhD student in

Embedded System Design
alessandro.palla@for.unipi.it

Slides and other stuffs
Website: http://for.unipi.it/alessandro_palla/

You can find there (maybe)
● Today’s slides (Theoretical lesson)
● Tomorrow’s slides (Practical lesson)
● Link to some datasheet

○ Cortex M4
○ STM32F4
○ STM32F4Discovery Board
○ LIS3DSH (Accelerometer)

http://for.unipi.it/alessandro_palla/

Lessons Outline
● Short seminario on STM32F4 Embedded CPU. Theory and simple

example
● Today

○ Challenges and Constraints designing an embedded system using a
CPU

○ STM32F4 Introduction
○ Cortex M4 CPU

■ Simple approach to Thumb Instruction Set
○ Memory Model
○ AMBA Bus
○ Clock
○ NVIC

Outline (...continue)
○ Power Management
○ DMA
○ Timer

● Tomorrow
○ Simple application development: USB Mouse controlled by g

acceleration.
○ How it works? When user tilts the board, accelerometer detects it and

change mouse pointer’s position on PC screen.
○ Developing and testing application on STM32F4-Discovery board

Software for Tomorrow
● Unfortunately we have only one developer board :(
● You can follow software developing by download two software (not

mandatory)
○ STM32Cube MX
○ IAR Embedded Workbench -> Kickstarter Edition (free)

If you have a STM32F4Discovery board you can take it!!

Embedded System
● Embedded computing systems

○ Computing systems embedded within
electronic devices

○ Hard to define. Nearly any computing
system other than a desktop
computer

○ Billions of units produced yearly,
versus millions of desktop units

○ Perhaps 50 per household and per
automobile

Short list of embedded
systems
Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems
Battery chargers
Camcorders
Cell phones
Cell-phone base stations
Cordless phones
Cruise control
Curbside check-in systems
Digital cameras
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Modems
MPEG decoders
Network cards
Network switches/routers
On-board navigation
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones
Scanners
Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR’s, DVD players
Video game consoles
Video phones
Washers and dryers

Common characteristics of
embedded systems
● Single-functioned

○ Executes a single program, repeatedly
● Tightly-constrained

○ Low cost, low power, small, fast, etc.
● Reactive and real-time

○ Continually reacts to changes in the system’s environment
○ Must compute certain results in real-time without delay

Design Example: digital
camera

● Single-functioned -- always a digital camera
● Tightly-constrained -- Low cost, low power, small, fast
● Reactive and real-time -- only to a small extent

Optimizing design metrics
● Obvious design goal:

○ Construct an implementation with desired functionality
● Key design challenge:

○ Simultaneously optimize numerous design metrics
● Design metric

○ A measurable feature of a system’s implementation
○ Optimizing design metrics is a key challenge

Design Metrics
● Common metrics

○ Unit cost: the monetary cost of manufacturing each copy of the
system, excluding NRE cost

○ NRE cost (Non-Recurring Engineering cost): The one-time monetary
cost of designing the system

○ Size: the physical space required by the system
○ Performance: the execution time or throughput of the system
○ Power: the amount of power consumed by the system
○ Flexibility: the ability to change the functionality of the system without

incurring heavy NRE cost

Design Metrics
● Common metrics (continued)

○ Time-to-prototype: the time needed to build a working version of the
system

○ Time-to-market: the time required to develop a system to the point that
it can be released and sold to customers

○ Maintainability: the ability to modify the system after its initial release
○ Correctness, safety, many more

Metrics Trade-Off
● Expertise with both software

and hardware is needed to
optimize design metrics
○ Not just a hardware or

software expert, as is
common

● A designer must be comfortable
with various technologies in
order to choose the best for a
given application and
constraints

General-Purpose Processor
● General-Purpose Processor

○ Processor designed for a variety of computation tasks
○ Low unit cost, in part because manufacturer spreads NRE over large

numbers of units
■ Motorola sold half a billion 68HC05 microcontrollers only in 1996

○ Carefully designed since higher NRE is acceptable
○ Can yield good performance, size and power
○ Low NRE cost, short time-to-market/prototype, high flexibility

■ User just writes software; no processor design
■ No need of complex hardware design, fast prototyping and error

detection

Case Study: STM32F4
● High performance embedded CPU using a Cortex M4 core
● Low cost development board (STM32F4Discovery costs approx 10$)
● Well documented
● Lots of feature and peripherals

● M in Cortex M4 means “Microcontroller”. CPU designed for embedded
systems that not requires too much computing power.

● Others Cortex family:
○ R: Realtime CPU, suitable for deep embedded real-time systems.
○ A: Application CPU, generic high performance processor

Also for DSP
applications

STM32F4

Key Features

STMicroelectronics
● One of the world top important productor of Electronics Devices

○ Embedded CPU
○ MEMS Sensor

■ MEMS means Micro-Electro-Mechanical-System, a sensor built in
silicon into a chip to reduce dimension, costs and reliability

■ Example:
● Microphone
● Accelerometer, Gyro, Inertial Modules
● Pressure Sensors and so on…

○ RFIC (Radio Frequency Integrated Circuit)
○ OPAMP and other analog electronics
○ ecc...

● An Italian-French company

MEMS
Example of MEMS
Accelerometer

Embedded into a chip, note
the scale!

CPU Structure
● Von Neumann

○ Fewer memory wires
● Harvard

○ Simultaneous program and
data memory access

● In Harvard architecture CPU can
access simultaneously both in
program and data memory

● Cortex M4 has Harvard structure
in order to improve CPU speed

Memory Model
● Program is stored in a flash memory,

data in a volatile memory like SRAM

● I-bus: This bus is used by the core to
fetch instructions.

● S-bus: This bus is used to access
data located in a peripheral or in
SRAM

● D-bus: This bus is used by the core
for literal load and debug access.

I-bus D-bus S-bus

Cortex M4 Structure

I-bus

D-bus

S-bus

● Key Concept: from processor
point of view everything is
memory space!
○ Data Memory
○ Program Memory
○ Peripheral registers

● CPU access to memory only
using LOAD and STORE
instruction
○ RISC (Reduced Instruction

Set Computer) paradigm

Memory Map
● 32 bit memory space (4 GB), byte-addressable,

little endian:

● Not everything of this space is available from user’
s application
○ Code
○ Internal SRAM
○ External SRAM
○ Peripherals
○ External Device

● Every peripheral is mapped into a specific
address

● Depending of MSB bits of address bus arbiter
selects which memory should be read/write

Multi AHB bus matrix
● Using Bus matrix multiple bus

master can perform
simultaneously operation on
different memory.

Multi AHB bus matrix
● Using Bus matrix multiple bus

master can perform
simultaneously operation on
different memory.

● For example in the same clock
cycle:
○ CPU can fetch instruction

from Flash

Multi AHB bus matrix
● Using Bus matrix multiple bus

master can perform
simultaneously operation on
different memory.

● For example in the same clock
cycle:
○ CPU can fetch instruction

from Flash
○ CPU can read/write data

from SRAM

Multi AHB bus matrix
● Using Bus matrix multiple bus

master can perform
simultaneously operation on
different memory.

● For example in the same clock
cycle:
○ CPU can fetch instruction

from Flash
○ CPU can read/write data

from SRAM
○ DMA can transfer data from

two different peripherals

Multi AHB bus matrix
● Using Bus matrix multiple bus

master can perform
simultaneously operation on
different memory.

● For example in the same clock
cycle:
○ CPU can fetch instruction

from Flash
○ CPU can read/write data

from SRAM
○ DMA can transfer data from

two different peripherals Multi AHB bus matrix automatically manages
access arbitration between masters

Flash memory latency
● Flash memory is perfect to store non-volatile data like program’s code,

static data etc… but is typically much slower than SRAM!
● CPU can’t fetch instruction before Flash latency time.

○ Es: fclk = 168 MHz, Tclk ~ 6 ns
○ Flash latency in clock cycle = floor(Tr,flash / Tclk)

● Flash latency time depending on
○ Supply voltage: low voltage increase latency time
○ Flash size: big flash has bigger parasitic capacitance

■ remember delay in CMOS:
Tdelay~ Ron-mosfet * Cp

■ Second order effect, voltage scaling is more important

Wait states

ART Accelerator
● Adaptive Real-Time memory

Accelerator: a proprietary
(STM) hardware block
designed to reduce wait
states in flash read access.

● Flash memory is organised in
128-bit blocks, up to 8
instruction-block using Thumb
instruction set (16 bit x instr.)

● ART works like a cache memory. Using prefetch of next instruction theoretically
it reduces to 0 wait states in sequential statements.

● For non-sequential instruction (like branch, call etc…) the penalty in terms of
number of cycles is at least equal to the number of wait states

● A dynamic branch prediction system is used to improve performances

Cortex M4 Register Map
● 13 General purpose register

○ Attention! in order to use 16
bit instruction, not all GP
register can be used for all
instruction

Example: ADD/SUBTRACT
 This instruction can do:

Rd = Rs ± Rn
Rd = Rs ± Offset3

● 5 bit opcode
● flag for immediate operand, 3 bit
● 3 bit register, from R0 to R7

For more than 3 bit sum:
MOV Rn,#num
SUM Rd,Rs,Rn

● Same code size 32 bit Instruction
set

● 2 clock cycle

Thumb Instruction Set
Thumb instructions in general requires
more code than 32 bit RISC instruction
set.
● More instruction for the same code

that decreases performance of CPU

● Otherwise Thumb increases code density
○ Example: only 16 bit instruction size for simple increment like

i++ => ADD R0,R0,#1

● Thumb code is typically 65% of ARM 32 bit code (infocenter.arm.com)
ARM7 and other high end processors can use both Thumb and ARM 32 bit
instruction sets

http://infocenter.arm.com

Cortex M4 Register Map
● SP: Stack Pointer
● PC: Program Counter
● LR: Link Register, the register

that contains return address from
PC when Branch and Link (BL)
instruction is executed

Example:
.main

BL func ; branch to func label
… ; after BX CPU execute this instruction

.func
… ; do stuffs
BX LR ; branch to LR register value

Clock
● Three different clock sources can be used to drive the system clock

○ HSI oscillator clock (high-speed internal clock signal)
○ HSE oscillator clock (high-speed external clock signal)
○ PLL clock

● Device has also two secondary clock sources
○ 32 kHz low-speed internal clock
○ 32.768 kHz low speed external crystal

■ This two clock can be used to drive Real-Time Clock
■ 215 = 32768, so if this clock feed a 16 bit timer his MSB toggle

every second

External Clock

● With crystal/ceramic resonator in range from 4 to 26 MHz
● Using an external source. It can have a frequency from 1 to 50 MHz

Select System Clock

Other derived clock

● APB1 and APB2 are peripheral lower speed buses
● Usually peripherals don’t need to go at maximum speed, so decrease clock

frequency can save power.
● Prescalers can be changed runtime, like clock frequency

Nested Vectored Interrupt
Controller
● Nested Vectored Interrupt Controller (NVIC) provides configurable interrupt

handling abilities to the processor.
○ Up to 91 maskable interrupt
○ Facilitates low-latency interrupt handling
○ Controls power management

● Three levels of priority:
○ Interrupt Number
○ Preempt Priority
○ Subpriority

Position Number
Position number is fixed and set by
design

Rule: interrupt handler with lower
priority/position number is prioritary to
others

How interrupt priority works
● It’s easy to understand using examples:

○ EXTI0 number = 13, EXTI1 number = 14

Case 1: EXTI0 and EXTI1 pending, same preemption and subpriority

CPU executes highest
priority interrupt

How interrupt priority works

Case 2: EXTI0 and EXTI1 pending, same preemption and but different
subprioroty: 1 for EXTI0 and 0 for EXTI1

User can change
priority interrupt using
subpriority

How interrupt priority works

Case 3: EXTI0 interrupt request while EXTI1 is running, same preemption and
subpriority

Interrupt service routine
(ISR) can be
preempted only from
interrupt with higher
preemption priority

How interrupt priority works

Case 4: EXTI0 interrupt request while EXTI1 is running, same subpriority but
different preemption: 0 for EXTI0 and 1 for EXTI1

In that case EXTI0 has
greater preemption
priority than EXTI1

Priority
● Stm32 has 4 bits of priority, 16 priority levels
● User can select how much of this 4 bits are for preemption priority and how

much is for subpriority

● Example: 2 bits for preemption and 2 bits for subpriority
○ In this case we can have 4 levels of preempted ISR and 4 for

subpriority
● Another Example: 0 bit for preemption and 4 for subpriority

○ No-preemptible ISR

Interrupt Priority Summary
● The preempt priority level defines whether an interrupt can be serviced

when the processor is already running another interrupt handler. In other
words, preempt priority determines if one interrupt can preempt another

● The subpriority level value is used only when two exception with the
same preempt priority level are pending. The exception with the lower
subpriority will be handled first.

● The position number level value is used only when two exception with the
same preempt priority and subpriority are pending. The exception with the
lower position number will be handled first.

Power Management
● Power consumption is one of the most important constraints in portable

embedded device.
● STM32F4 provides several low-power mode

○ Sleep mode (CPU core stopped)
○ Stop mode (all clocks are stopped)
○ Standby mode (disable 1.2V power supply, lost of volatile data)

● In addition user can reduce power consumption in run mode
○ Slowing down system clock
○ Disable peripherals clock when they are unused

Sleep Mode

● In sleep mode only CPU clock is stopped.
● To enter in this mode user can call special instruction

○ WFI (Wait for Interrupt) => wake CPU on any interrupt configured.
○ WFE (Wait for Event) => wake CPU on any event. Event is generated

by EXTI peripherals (see documentation or TODO)

Sleep Mode Description

Mode entry WFI or WFE special instruction

Mode Exit ● Interrupt if WFI was used
● Event if WFE was used

Latency None

Stop Mode

● In stop mode all clock are stopped. Voltage is still on
● User can decide to keep active few low consumption peripherals like RTC,

Watchdog and low frequency oscillator (for RTC and Watchdog)

Stop Mode Description

Mode entry WFI or WFE instruction plus configuration of some register

Mode Exit ● EXTI lines configured in Interrupt mode if WFI was used
● EXTI lines configured in Interrupt mode if WFI was used

Latency Oscillator startup time

Standby Mode

● In standby mode device disabled 1.2V regulator. All non volatile data was
lost!!

● After waking up from standby, program execution restarts in the same way
as after a Reset!

● User can decide to keep active few low consumption peripherals like RTC,
Watchdog and low frequency oscillator (for RTC and Watchdog)

Stop Mode Description

Mode entry WFI or WFE instruction plus configuration of some register

Mode Exit Rising edge on WKUP pin, external reset, RTC or Watchdog
reset

Latency Oscillator startup time

Reset Circuit

DMA
● Direct memory Access(DMA) is used in order to provide high-speed data

transfer between peripherals and memory and between memory and
memory.

● Data can be quickly moved by DMA without any CPU action.
● This keeps CPU resources free for other operations

● Three modes:
○ Memory-to-Peripheral
○ Peripheral-to-Memory
○ Memory-to-Memory

DMA
● DMA read data from Memory and

place it to Peripheral destination
address.

● It automatically increments
source/destination address to
perform multi-byte transfer, also
in circular mode (i = (i+1)%N)

● 8 stream can be performed
simultaneously, coordinated by a
bus Arbiter depending on stream
priority

● DMA transfer can be triggered
both by software or peripherals.

DMA Example

Peripheral-to-memory
Peripheral to memory
transfer controlled by CPU

Example:
Transfer data array from SD
card to memory

Peripheral-to-memory
Peripheral to memory
transfer controlled by
peripheral

Example:
USB data transfer

Memory-to-memory
Memory to memory transfer.

Example:
Non blocking memcpy

During memory transfer
CPU is free to do other
stuffs

Timer
● 16-bit Counter
● Up, down and centred counting modes
● Auto Reload
● 4 x 16-bit Capture/Compare Channels

○ Programmable channel direction:
input/output

○ Input Capture, PWM Input Capture Modes
○ Output Compare, PWM, One Pulse Modes

● Independent IRQ/DMA Requests:
○ At each Update Event
○ At each Capture Compare Events
○ At each Input Trigger

Clock Selection
● Clock can be selected from 2 sources

○ Internal clock TIMxCLK provided by
the RCC

○ External pin ETR
● Timer Trigger can be

○ Internal trigger input 1 to 4:
■ ITR1 / ITR2 / ITR3 / ITR4
■ Using another timer as a

prescaler
○ External Capture Compare pins

■ Pin 1: TI1FP1 or TI1F_ED
■ Pin 2: TI2FP2

○ External pin ETR

Counting Modes
3 Counting Modes:
● Center Aligned
● Up counting
● Down Counting

All three mode have the same update-event interrupt period

Output Compare
The Output Compare is used to control an output waveform or indicate when a
period of time has elapsed.
● When a match is found between the capture/compare register and the

counter:
○ The corresponding output pin is assigned to the programmable Mode,

it can be:
■ Set/Reset/Toggle
■ Remain unchanged

○ Generates an interrupt if the corresponding interrupt mask is set
○ Send a DMA request if the corresponding enable bit is set

Output Compare

PWM
● The PWM mode allows to generate 4 independent signals.
● The frequency and a duty cycle determined as follow:

○ One auto-reload register to defined the PWM period.
○ Each PWM channel has a Capture Compare register to define the duty

cycle.
● There are two configurable PWM modes:

○ Edge-aligned Mode
○ Center-aligned Mode

Synchronization
Timers can be linked together for synchronization pourposes
1) Cascade Mode: TIM1 used as master timer for TIM2, TIM2 configured as

TIM1 slave and master for TIM3

Synchronization
2) One Master several slaves: TIM1 used as master for TIM2, TIM2 and

TIM4.

Synchronization
3) Timers and external trigger synchronization: TIM1, TIM2 and TIM3 are

slaves for an external signal connected to respective Timers inputs.

RTC: Real Time Clock
● Clock sources

○ 32.768 kHz dedicated oscillator (LSE)
○ Low frequency (32kHz), low power

internal RC(LSI)
○ HSE divided by 128

● 3 Event/Interrupt sources
○ Second
○ Overflow
○ Alarm (also connected to EXTI Line

17 for Auto Wake-Up from STOP)

