
May 2014 DocID025934 Rev 1 1/56

UM1734
User manual

STM32Cube USB device library

Introduction

Universal Serial Bus (USB) is the most successful interconnect in the history of personal
computing which is used to connect devices like mouse, game-pads and joysticks,
scanners, digital cameras, printers… etc. USB has also migrated into consumer electronics
and mobile products.

The aim of this document is to describe how to start and implement a USB device
applications for most common USB device classes (HID, MSC, Audio, CDC…) based on the
USB device stack that supports all STM32 microcontrollers series provided by
STMicroelectronics.

The USB device library is a part of STM32Cube firmware package (such as STM32CubeF0,
STM32CubeF2, STM32CubeF3, STM32CubeF4 and STM32CubeL0) and can be
downloaded free from ST website (http://www.st.com/stm32cube).

www.st.com

http://www.st.com/stm32cube
http://www.st.com

Contents UM1734

2/56 DocID025934 Rev 1

Contents

1 STM32Cube overview . 6

2 Preface . 7

2.1 Acronyms and abbreviations . 7

2.2 Additional Information . 7

2.3 References . 7

3 Introduction . 8

3.1 Overview . 8

3.2 Features . 9

4 USB device library architecture . 10

4.1 Architecture overview . 10

5 USB OTG Hardware Abstraction Layer . 11

5.1 Driver architecture .11

5.2 USB driver programming manual .11

5.2.1 Configuring USB driver structure . 11

6 USB device library overview . 15

6.1 USB device library description . 15

6.1.1 USB device library flow . 15

6.1.2 USB device data flow . 19

6.1.3 Core interface with low level driver . 20

6.1.4 USB device library interfacing model . 21

6.1.5 Configuring the USB device firmware library . 22

6.1.6 USB control functions . 23

6.2 USB device library functions . 23

6.3 USB device class interface . 27

7 USB device library class module . 29

7.0.1 HID class . 29

7.0.2 Mass storage class . 31

7.0.3 Device firmware upgrade (DFU) class . 36

DocID025934 Rev 1 3/56

UM1734 Contents

3

7.0.4 Audio class . 41

7.0.5 Communication device class (CDC) . 45

7.0.6 Adding a custom class . 50

7.0.7 Library footprint optimization . 51

8 Frequently-asked questions . 53

9 Revision history . 55

List of tables UM1734

4/56 DocID025934 Rev 1

List of tables

Table 1. List of terms . 7
Table 2. USB device status . 14
Table 3. Standard requests . 16
Table 4. API description . 20
Table 5. Low level Event Callback functions . 22
Table 6. USB library configuration . 22
Table 7. USB device core files . 24
Table 8. Class drivers files . 24
Table 9. usbd_core (.c,.h) files . 24
Table 10. usbd_ioreq (.c,.h) files functions . 25
Table 11. usbd_ctrlq (.c,.h) files functions . 26
Table 12. USB device class files . 29
Table 13. usbd_hid.c,h files . 30
Table 14. SCSI commands. 32
Table 15. usbd_msc (.c,.h) files . 33
Table 16. usbd_msc_bot (.c,.h) files . 33
Table 17. usbd_msc_scsi (.c,.h) . 34
Table 18. Functions . 36
Table 19. DFU states . 37
Table 20. Supported requests . 39
Table 21. usbd_dfu (.c,.h) files . 39
Table 22. Audio control requests . 42
Table 23. usbd_audio_core (.c,.h) files. 42
Table 24. usbd_audio_if (.c,.h) files . 44
Table 25. Audio player states . 44
Table 26. usbd_cdc (.c,.h) files. 46
Table 27. Configurable CDC parameters . 48
Table 28. usbd_cdc_interface (.c,.h) files . 48
Table 29. Variables used by usbd_cdc_xxx_if.c/.h . 49
Table 30. Document revision history . 55

DocID025934 Rev 1 5/56

UM1734 List of figures

5

List of figures

Figure 1. STM32Cube block diagram . 6
Figure 2. STM32Cube USB device library . 9
Figure 3. USB device library architecture . 10
Figure 4. Driver architecture overview . 11
Figure 5. USBD_HandleTypedef . 13
Figure 6. USB device library directory structure . 15
Figure 7. USB device library process flowchart . 18
Figure 8. USB device data flow . 20
Figure 9. USB device library interfacing model . 21
Figure 10. BOT Protocol architecture . 32
Figure 11. DFU Interface state transitions diagram . 38

STM32Cube overview UM1734

6/56 DocID025934 Rev 1

1 STM32Cube overview

STMCubeTM initiative was originated by STMicroelectronics to ease developers’ life by
reducing development efforts, time and cost. STM32Cube covers STM32 portfolio.

STM32Cube Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeF2 for STM32F2 series and STM32CubeF4 for STM32F4 series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics.

– All embedded software utilities coming with a full set of examples.

Figure 1. STM32Cube block diagram

DocID025934 Rev 1 7/56

UM1734 Preface

55

2 Preface

2.1 Acronyms and abbreviations
Table 1 gives a brief definition of acronyms and abbreviations used in this document.

2.2 Additional Information

In addition to this document STMicroelectronics provides several other ressources on The
USB:

• USB HOST User Manual UM1720

• UM1725 (Description of STM32F4xx HAL drivers) in this document you can find the
two USB Generic drivers description (HCD for Host and PCD for Device)

2.3 References

• Universal Serial Bus Specification, Revision 2.0, http: //www.usb.org

• USB device class specifications (Audio, HID, MSC, etc.): http://www.usb.org

Table 1. List of terms

Term Meaning

API Application Programming Interface

CDC Communication Device Class

DFU Device Firmware Upgrade

FS Full Speed (12 Mbps)

HID Human Interface Device

Mbps Megabit per second

MSC Mass Storage Class

OTG On-The-Go: An OTG peripheral can switch HOST/DEVICE role on the fly

PID USB Product Identifier

SCSI Small Computer System Interface

SOF Start Of Frame

VID USB Vendor Identifier

USB Universal Serial Bus

Introduction UM1734

8/56 DocID025934 Rev 1

3 Introduction

3.1 Overview

STMicorelectronics offers to its customers new USB stacks: device stack and host stack
supporting all STM32 MCUs and many development tools such as Atollic® TrueSTUDIO ,
IAR Embedded Workbench for ARM ®, and Keil uVision®.

This document focuses on USB device stack. For the host stack, please refer to the related
users manual.

The USB device library is generic for All STM32 microcontrollers, Only the HAL layer is
adapted to each STM32 device.

The USB device library sits on the top of the STM32Cube USB device HAL driver. The
following document describes the STM32Cube USB device library middleware module and
illustrates how user can develop easily his own USB device application using this library
which offers the needed APIs.

The USB device library, which is a part of STM32Cube package for each STM32 series ,
contains the USB low level driver, commonly used class drivers and sample applications for
the most common USB Device classes examples for USB full speed and High speed
transfer types (control, interrupt, bulk and isochronous). The aim of the USB device library is
to provide at least one firmware demo per USB transfer type:
Human Interface Device HID:
• HID Joystick demonstration based on the embedded joystick on the EVAL boards and

Custom HID examples

Audio:

• Audio device Example for streaming audio data

Communication Device (CDC):

• VCP USB-to-RS232 bridge to realize a virtual COM port.

Bulk:

• Mass storage demonstration based on the microSD card available on the EVAL
boards.

Device Firmware Upgrade:

• DFU for firmware downloads and uploads

Dual Core devices demonstration

• Based on Mass storage with Human interface and Mass storage with CDC device
examples

Among the topics covered:

• USB device library architecture

• USB device library description

• USB device library state machine overview

• USB device classes overview

DocID025934 Rev 1 9/56

UM1734 Introduction

55

3.2 Features

The USB device library:

• Supports multi packet transfer features: allowing sending big amount of data without
splitting it into max packet size transfers.

• Supports up to 3 back to back transfers on control endpoints (compatible with OHCI
controllers).

• Uses configuration files to change the core and the library configuration without
changing the library code (Read Only).

• Includes 32-bits aligned data structures to handle DMA based transfer in High speed
modes.

• Supports multi USB OTG core instances from user level (configuration file).

Note: - The USB device library could be used with or without RTOS; the CMSIS RTOS wrapper is
used to make abstraction with OS kernel.

- USB device examples do not display messages.

Figure 2. STM32Cube USB device library

USB device library architecture UM1734

10/56 DocID025934 Rev 1

4 USB device library architecture

4.1 Architecture overview
The USB device library is mainly divided into three layers with the applications being
developed on top of them as shown in the above Figure 3: USB device library architecture

The first Layer is composed of two main parts: the core and the class drivers.

• The library core is composed of four main blocks:

– USB core module: offers to level APIs and manages the internal USB device
library state machine and call back processes from USB Interrupts

– USB Requests module: handles chapter 9 requests

– USB I/O requests module: handles low level I/O requests

– USB Log and debug module: following debug level USB_DEBUG_LEVEL, outputs
user, log, error and debug messages.

• The USB Device classes is composed of a set predefined class drivers ready to be
linked to the USB core through the USBD_RegisterClass () routine.

The USB device library is a USB 2.0 compatible generic USB device stack, that is
compatible with all the STM32 USB Cores, it can be easily linked to any USB HAL driver
thanks to the configuration wrapper file which avoid any dependency between the USB
library and the low level drivers.

Figure 3. USB device library architecture

DocID025934 Rev 1 11/56

UM1734 USB OTG Hardware Abstraction Layer

55

5 USB OTG Hardware Abstraction Layer

The low level driver can be used to connect the USB OTG core with the high level stack.

5.1 Driver architecture

Figure 4. Driver architecture overview

• The bottom layer (Low Layer USB driver) provides common APIs for device, and OTG
modes: the core initialization in each mode and the control of the transfer flow

• The Peripheral controller driver (PCD) layer provides an API for device mode access
and the main interrupt routine for this mode.

• The OTG controller driver (OTG) layer provides an API for OTG mode access and the
main interrupt routine for this mode.

Note: For More details how to use the PCD driver, please refers to the UM1725. In this document
All PCD driver APIs are descriped.

5.2 USB driver programming manual

5.2.1 Configuring USB driver structure

Device initialization

The device is initialized using the following function in stm32fxxx_hal_pcd.c file by:

HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd)

Endpoint configuration

Once the USB core is initialized, The upper layer may call the low level driver to open or
close the active endpoint to start transferring data. The following two APIs are used:

USB OTG Hardware Abstraction Layer UM1734

12/56 DocID025934 Rev 1

HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr,
uint16_t ep_mps, uint8_t ep_type)

HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)

ep_addr, ep_mps and ep_type are respectively Endpoint address,Max Data Transfer and
Transfer Type.

Device core structure

The main structure used in the device library is the device handle which is of type
“USBD_HandleTypedef” Figure 5 on page 13

The USB Global device structure contain all the variables and structures used to keep in
real-time all the information related to devices, the control transfer state machine and also
the endpoint information and status.

In this structure, dev_config holds the current USB device configuration and ep0_state
controls the state machine with the following states:

/* EP0 State */

#define USBD_EP0_IDLE 0

#define USBD_EP0_SETUP 1

#define USBD_EP0_DATA_IN 2

#define USBD_EP0_DATA_OUT 3

#define USBD_EP0_STATUS_IN 4

#define USBD_EP0_STATUS_OUT 5

#define USBD_EP0_STALL 6

In this structure, dev_state defines the connection, configuration and power status:

/* Device Status */

#define USBD_DEFAULT 1

#define USBD_ADDRESSED 2

#define USBD_CONFIGURED 3

#define USBD_SUSPENDED 4

Note: The USB specification(in Chapter 9) has defined six states for a USB device:

Attached: If the device is attached to the USB but is not powred by the USB

Powered: if the device is attached to the USB and has been powred but has not yet
received a reset request.

Default: if the device is attached to the USB, powered and has been reset, but has not been
assigned a unique address.

Address: if the device is attached to the USB, powered, has been reset and has had a
unique a addresse assigned to it.

Configured: if the device is already in address state and configured and is not in a suspend
state.

Suspended: If the device is attached and configured, but has not seen activity on the bus
for 3ms

DocID025934 Rev 1 13/56

UM1734 USB OTG Hardware Abstraction Layer

55

Figure 5. USBD_HandleTypedef

USB data transfer flow
The PCD layer provides all the APIs needed to start and control a transfer flow through the

following set of functions:

HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t
ep_addr, uint8_t *pBuf, uint32_t len)

HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr,
uint8_t *pBuf, uint32_t len)

HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)

HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)

HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)

The PCD layer has one function that must be called by the USB interrupt:

void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd)

The stm32fxxx_hal_pcd.h file contains the function prototypes of the functions called from
the library core layer to handle the USB events.

typedef struct _USBD_HandleTypeDef

{

 uint8_t id;

 uint32_t dev_config;

 uint32_t dev_default_config;

 uint32_t dev_config_status;

 USBD_SpeedTypeDef dev_speed;

 USBD_EndpointTypeDef ep_in[15];

 USBD_EndpointTypeDef ep_out[15];

 uint32_t ep0_state;

 uint32_t ep0_data_len;

 uint8_t dev_state;

 uint8_t dev_old_state;

 uint8_t dev_address;

 uint8_t dev_connection_status;

 uint8_t dev_test_mode;

 uint32_t dev_remote_wakeup;

 USBD_SetupReqTypedef request;

 USBD_DescriptorsTypeDef *pDesc;

 USBD_ClassTypeDef *pClass;

 void *pClassData;

 void *pUserData;

 void *pData;

} USBD_HandleTypeDef;

USB OTG Hardware Abstraction Layer UM1734

14/56 DocID025934 Rev 1

Important enumerated typedefs

USBD_StatusTypeDef

Almost all library functions return a status of type USBD_StatusTypeDef, application should
always check on the returned status.

typedef enum

{

 USBH_OK = 0,

 USBH_BUSY,

 USBH_FAIL,

}USBH_StatusTypeDef;

The following table describes the above returned status:

Table 2. USB device status

Status Description

USBH_OK returned when operation is completed successfully

USBH_BUSY retuned when operation is still not completed (busy)

USBH_FAIL
returned when operation has failed due to a low level error or
protocol fail

DocID025934 Rev 1 15/56

UM1734 USB device library overview

55

6 USB device library overview

The USB device library is based on the generic USB low level driver and developed to work
in Full speed and High speed mode.

It implements the USB device library machines as defined by the revision 2.0 Universal
Serial Bus Specification. This module functionalities are covered by the files under "Core"
folder within the USB device library firmware package (see Figure 6). The USB class
module is the class layer built in compliance with the protocol specification.

Figure 6. USB device library directory structure

6.1 USB device library description

6.1.1 USB device library flow

Handling control endpoint 0

The USB specification defines four transfer types: control, interrupt, bulk and isochronous
transfers. The USB host sends requests to the device through the control endpoint (in this
case, control endpoint is endpoint 0). The requests are sent to the device as SETUP
packets. These requests can be classified into three categories: standard, class-specific
and vendor-specific. Since the standard requests are generic and common to all USB
devices, the library receives and handles all the standard requests on the control endpoint
0.

USB device library overview UM1734

16/56 DocID025934 Rev 1

The format and the meaning of the class-specific requests and the vendor specific requests
are not common for all USB devices.

All SETUP requests are processed with a state machine implemented in an interrupt model.
An interrupt is generated at the end of the correct USB transfer. The library code receives
this interrupt. In the interrupt process routine, the trigger endpoint is identified. If the event is
a setup on endpoint 0, the payload of the received setup is saved and the state machine
starts.

Transactions on non-control endpoint

The class-specific core uses non-control endpoints by calling a set of functions to send or
receive data through the data IN and OUT stage callbacks.

Data structure for the SETUP packet

When a new SETUP packet arrives, all the eight bytes of the SETUP packet are copied to
an internal structure USB_SETUP_REQ req, so that the next SETUP packet cannot
overwrite the previous one during processing. This internal structure is defined as:

Standard requests

Most of the requests specified in the following table of the USB specification are handled as
standard requests in the library. The table lists all the standard requests and their valid
parameters in the library. Requests that are not in this table are considered as non-standard
requests.

typedef struct usb_setup_req

{

 uint8_t bmRequest;

 uint8_t bRequest;

 uint16_t wValue;

 uint16_t wIndex;

 uint16_t wLength;

}USBD_SetupReqTypedef;

Table 3. Standard requests

-

S
ta

te

b
m

R
eq

u
es

tT
yp

e

L
o

w
 b

y
te

 o
f

w
V

a
lu

e

H
ig

h
 b

y
te

 o
f

w
V

a
lu

e

L
o

w
 b

y
te

 o
f

w
In

d
ex

H
ig

h
 b

y
te

 o
f

w
In

d
ex

w
L

en
g

th

Comments

GET_STATUS

A, C 80 00 00 00 00 2 Gets the status of the Device.

C 81 00 00 N 00 2
Gets the status of Interface, where N is
the valid interface number.

A, C 82 00 00 00 00 2
Gets the status of Endpoint 0 OUT
direction.

A, C 82 00 00 80 00 2 Gets the status of Endpoint 0 IN direction.

C 82 00 00 EP 00 2 Gets the status of Endpoint EP.

DocID025934 Rev 1 17/56

UM1734 USB device library overview

55

Note: In column State: D = Default state; A = Address state; C = Configured state; All = All states.
EP: D0-D3 = endpoint address; D4-D6 = Reserved as zero; D7= 0: OUT endpoint, 1: IN
endpoint.

CLEAR_FEATURE

A, C 00 01 00 00 00 00
Clears the device remote wakeup
feature.

C 02 00 00 EP 00 00
Clears the STALL condition of endpoint
EP. EP does not refer to endpoint 0.

SET_FEATURE

A, C 00 01 00 00 00 00 Sets the device remote wakeup feature.

C 02 00 00 EP 00 00
Sets the STALL condition of endpoint EP.
EP does not refer to endpoint 0.

SET_ADDRESS D, A 00 N 00 00 00 00
Sets the device address, N is the valid
device address.

GET_DESCRIPTOR

All 80 00 01 00 00
Non-

0
Gets the device descriptor.

All 80 N 02 00 00
Non-

0
Gets the configuration descriptor; where
N is the valid configuration index.

All 80 N 03 LangID
Non-

0

Gets the string descriptor; where N is the
valid string index. This request is valid
only when the string descriptor is
supported.

GET_CONFIGURATION A, C 80 00 00 00 00 1 Gets the device configuration.

SET_CONFIGURATION A, C 80 N 00 00 00 00
Sets the device configuration; where N is
the valid configuration number.

GET_INTERFACE C 81 00 00 N 00 1
Gets the alternate setting of the interface
N; where N is the valid interface number.

SET_INTERFACE C 01 M 00 N 00 00

Sets alternate setting M of the interface
N; where N is the valid interface number
and M is the valid alternate setting of the
interface N.

Table 3. Standard requests (continued)

-

S
ta

te

b
m

R
e

q
u

es
tT

yp
e

L
o

w
 b

yt
e

o
f

w
V

al
u

e

H
ig

h
 b

y
te

 o
f

w
V

al
u

e

L
o

w
 b

yt
e

o
f

w
In

d
e

x

H
ig

h
 b

y
te

 o
f

w
In

d
e

x

w
L

en
g

th

Comments

USB device library overview UM1734

18/56 DocID025934 Rev 1

Non-standard requests

All the non-standard requests are passed to the class specific code through callback
functions.

– SETUP stage

The library passes all the non-standard requests to the class-specific code with the
callback pdev->pClass->Setup (pdev, req) function.

The non-standard requests include the user-interpreted requests and the invalid
requests. User-interpreted requests are class- specific requests, vendor-specific
requests or the requests that the library considers as invalid requests that the
application wants to interpret as valid requests

Invalid requests are the requests that are not standard requests and are not user-
interpreted requests. Since pdev->pClass->Setup (pdev, req) is called after the SETUP
stage and before the data stage, user code is responsible, in the pdev->pClass-
>Setup (pdev, req) to parse the content of the SETUP packet (req). If a request is
invalid, the user code has to call USBD_CtlError(pdev , req) and return to the caller of
pdev->pClass->Setup (pdev, req)

For a user-interpreted request, the user code then prepares the data buffer for the
following data stage if the request has a data stage; otherwise the user code executes
the request and returns to the caller of pdev->pClass->Setup (pdev, req).

– DATA stage

The class layer uses the standard USBD_CtlSendData and USBD_CtlPrepareRx to
send or receive data, the data transfer flow is handled internally by the library and the
user does not need to split and the data in ep_size packet.

– Status stage

The status stage is handled by the library after returning from the pdev->pClass->Setup
(pdev, req) callback.

Figure 7. USB device library process flowchart

As shown in the Figure 7: USB device library process flowchart Only there modules are
necessary for USB programming: USB library, the USB class and the main application.

The main application is executing the user defined program, main.c,
stm32fxx_it.c,usbd_conf.c and usbd_desc.c and their header files, are the main files

DocID025934 Rev 1 19/56

UM1734 USB device library overview

55

(mandatory for the application) that user need to develop his own application, user can
modify them according to his application (class driver)

Only simple APIs are called for interfacing between the application layer and the USB library
module which handles the USB initialization and getting the current status of the USB.

To initialize the USB HAL driver, the USB device library and the hardware on the used board
(BSP) and to start the library, the user call these three APIs

– USBD_Init (): This function Initailizes the device stack, load the class driver and the
descriptor address.

The device descriptor is stored in the usbd_desc.c and usbd_desc.h (used for the
configuration decriptor type) files.

– USBD_RegisterClass(): This function link the class driver to the device core.

– USBD_Start(): This function allows user to start the USB device cor

For example in the usbd_conf file:

– User can add other endpoints depending on the class requirement when calling
USBD_LL_Init() function in the dev_endpoints variable which should contain all
mandatory endpoint following the USB class specifications.

The USB device library provides several configurations thanks to the usbd_conf.h file,
please reffers to Section 6.1.5: Configuring the USB device firmware library on page 22 for
more details.

Note: The HAL library initialization is done through the HAL_Init() API in the stm32fxxx_hal.c This
method performs the following operation:

- Reset of all peripherals

- Configure Flash prefetch, Instruction cache, Data cache

- Enable systick and configure 1ms tick (default clock after Reset is HSI)

6.1.2 USB device data flow

The USB library (USB core and USB class layer) handles the data processing on Endpoint
0 (EP0) through the IO request layer when a wrapping is needed to manage the multi-
packet feature on the control endpoint or directly from the stm32fxxx_hal_pcd layer when
the other endpoints are used since the USB OTG core supports the multi-packet feature.
The following figure illustrates this data flow scheme.

USB device library overview UM1734

20/56 DocID025934 Rev 1

Figure 8. USB device data flow

6.1.3 Core interface with low level driver

As mentioned before, the USB device library interfaces with the STM32Cube HAL low layer
drivers using a low level interface layer which acts as a link layer with the STM32Cube HAL.

The low level interface implements low level API functions and calls some library core
callback functions following some USB events.

In the STM32Cube solution, implementation of the low level interface is provided as part of
the USB devcie examples since some part of the low level interface are board and system
dependent.

The following table lists the low level API functions:

Note: These APIs are provided by the USB Device Configuration file (usbd_conf.c). They should
be implemented by user in the user files and adapted to the USB Device Controller Driver.

The User can start from the usbd_conf.c file provided within STM32Cube package. This file
could be also copied to the application folder and modified depending on the application
needs.

Table 4. API description

API Description

USBD_LL_Init Low level intialization

USBD_LL_DeInit Low level de-initialization

USBD_LL_Start Low level start

USBH_LL_Stop Low level stop

USBD_LL_OpenEP Initialize an endpoint

USBD_LL_CloseEP Close and de-initialize an endpoint state

DocID025934 Rev 1 21/56

UM1734 USB device library overview

55

6.1.4 USB device library interfacing model

The USB device library is built around central generic and portable USB device library and
class modules.

Figure 9. USB device library interfacing model

The following are the device library callback functions which are called from the low level
interface following some USB events.

USBD_LL_FlushEP Flush an endpoint of the Low Level Driver.

USBD_LL_StallEP Set a Stall condition on an endpoint of the Low Level Driver.

USBD_LL_ClearStallEP Clear a Stall condition on an endpoint of the Low Level Driver.

USBD_LL_IsStallEP Return Stall condition.

USBD_LL_SetUSBAddress Assign an USB address to the device

USBD_LL_Transmit Transmit data over an endpoint

USBD_LL_PrepareReceive prepare an endpoint for reception

USBD_LL_GetRxDataSize Return the last transfered packet size.

Table 4. API description (continued)

API Description

USB device library overview UM1734

22/56 DocID025934 Rev 1

6.1.5 Configuring the USB device firmware library

The USB device library can be configured using the usbd_conf.h file.

The usbd_conf.h is a specific configuration file used to define some global parameters and
specific configurations. The usbd_conf.c file the interface file used to link the upper library
with the HAL drivers and the BSP Drivers

Table 5. Low level Event Callback functions

Callback functions Description

HAL_PCD_ConnectCallback Device connection Callback

HAL_PCD_DataInStageCallback data IN stage Callback

HAL_PCD_DataInStageCallback Data OUT stage Callback

HAL_PCD_DisconnectCallback Disconnection Callback

HAL_PCD_ISOINIncompleteCallback ISO IN transaction Callback

HAL_PCD_ISOINIncompleteCallback ISO OUT transaction Callback

HAL_PCD_ResetCallback USB Reset Callback

HAL_PCD_ResumeCallback USB Resume Callback

HAL_PCD_SetupStageCallback setup stage Callback

HAL_PCD_SOFCallback Start Of Frame callback

HAL_PCD_SuspendCallback Suspend Callback

Table 6. USB library configuration

item Parameter Description

Common
Configuration

USBD_MAX_NUM_CONFIGURATION
Max number of supported
configurations [1.255]

USBD_MAX_NUM_INTERFACES
Max number of supported
Interfaces [1.255]

USBD_MAX_STR_DESC_SIZ
Max size of string descriptors
[uint16]

USBD_SELF_POWERED Enable Self power feature [0/1]

USBD_DEBUG_LEVEL Debug and log level

USBD_SUPPORT_USER_STRING Enable User string support[0/1]

Mass Storage
Configuration

MSC_MEDIA_PACKET
Media I/O buffer Size multiple of
512 [512 to 32K]

HID Configuration NA NA

DocID025934 Rev 1 23/56

UM1734 USB device library overview

55

Note: The User can start from the usbd_conf.h file provided within STM32Cube package. This file
could be also copied to the application folder and modified depending on the application
needs.

Note: By default for USB device examples, library and user messages are not displayed on the
LCD.

But It is possible that the user can implement his own messages (to redirect the library
messages on the LCD screen, lcd_log.c driver need to be added to the application
sources) and have the choice to display them or not, this is possible by modifying defines
values in the configuration file “usbd_conf.h” available under the project includes directory,
in a way to fit the application requirements, such as:

0: No Log/Debug messages

1: log messages enabled

2: log and debug messages enabled

6.1.6 USB control functions

User applications can benefit from a few USB functions included in a USB device.

Device reset When the device receives a reset signal from the USB, the library resets and
initializes the application on both software and hardware. This function is part of the interrupt
routine.

Device suspend When the device detects a suspend condition on the USB, the library
stops all the operations and puts the system in suspend state (if low power mode
management is enabled in the usbd_conf.c file).

Device resume When the device detects a resume signal on the USB, the library restores
the USB core clock and puts the system in idle state (if low power mode management is
enabled in the usbd_conf.c file).

6.2 USB device library functions

The Core folder contains the USB device library machines as defined by the Universal
Serial Bus Specification, revision 2.0.

DFU Configuration

USBD_DFU_MAX_ITF_NUM
Max media interface number
[1.255]

USBD_DFU_XFER_SIZE
Media I/O buffer Size multiple of
512 [512 to 32 K]

USBD_DFU_APP_DEFAULT_ADD
Application Address
(0x0800C000)

CDC Configuration NA NA

Audio Configuration USBD_AUDIO_FREQ 8 to 48 Khz

Table 6. USB library configuration (continued)

item Parameter Description

USB device library overview UM1734

24/56 DocID025934 Rev 1

Table 7. USB device core files

The Class folder contains all the files relative to the class implementation and meets with
the specification of the protocol built in these classes.

File Description

usbd_core (.c, .h)
This file contains the functions for handling all USB communication
and state machine.

usbd_req(.c,.h)
This file includes the requests implementation listed in Chapter 9 of
the specification.

usbd_ctlreq(.c,.h) This file handles the results of the USB transactions.

usbd_conf_template(.c,.h)
Template file for the low layer interface file, should be customized
by user and included with application file

usbd_def(.c, .h) Common library defines

Table 8. Class drivers files

USB class file Description

Mass-Storage

usbh_msc (.c,.h) mass-storage class handler

usbh_msc_bot(.c,. mass-storage class handler

usbh_msc_scsi(.c,.h) SCSI commands

usbd_msc_data (.c,.h) vital inquiry pages and sense data

HID Joystick mouse usbh_hid(.c,.h HID class state handler

Audio speaker usbh_audio(.c,.h) Audio class handler

Audio speaker usbh_cdc(.c,.h) CDC virtual comport handler

Custom HID usbd_customhid(.c,.h) Custom HID Class Handler

DFU Class usbd_dfu(.c,.h) DFU class handler

Table 9. usbd_core (.c,.h) files

Functions Description

USBD_StatusTypeDef

USBD_Init(USBD_HandleTypeDef *pdev,
USBD_DescriptorsTypeDef *pdesc, uint8_t id)

Initializes the device library and loads
the class driver and the user call backs.

USBD_StatusTypeDef
USBD_DeInit(USBD_HandleTypeDef *pdev)

De-Initializes the device library

USBD_StatusTypeDef
USBD_RegisterClass(USBD_HandleTypeDef *pdev,
USBD_ClassTypeDef *pclass)

load the class driver

USBD_StatusTypeDef USBD_Start
(USBD_HandleTypeDef *pdev)

Start the device library process

USBD_StatusTypeDef USBD_Stop
(USBD_HandleTypeDef *pdev)

Stop the device library process and free
related resources.

DocID025934 Rev 1 25/56

UM1734 USB device library overview

55

USBD_StatusTypeDef
USBD_LL_SetupStage(USBD_HandleTypeDef *pdev,
uint8_t *psetup)

Handle setup stage from ISR

USBD_StatusTypeDef
USBD_LL_DataOutStage(USBD_HandleTypeDef *pdev ,
uint8_t epnum, uint8_t *pdata)

Handle Data out stage from ISR

USBD_StatusTypeDef
USBD_LL_DataInStage(USBD_HandleTypeDef *pdev
,uint8_t epnum, uint8_t *pdata)

Handle data IN stage

USBD_StatusTypeDef
USBD_LL_Reset(USBD_HandleTypeDef *pdev)

Handle USB Reset from ISR

USBD_StatusTypeDef
USBD_LL_SetSpeed(USBD_HandleTypeDef *pdev,
USBD_SpeedTypeDef speed)

Set USB Core Speed

USBD_StatusTypeDef
USBD_LL_Suspend(USBD_HandleTypeDef *pdev)

Handle Suspend Event

USBD_StatusTypeDef
USBD_LL_Resume(USBD_HandleTypeDef *pdev)

Handle Resume event

USBD_StatusTypeDef
USBD_LL_SOF(USBD_HandleTypeDef *pdev);

Handle Start Of Frame Event

USBD_StatusTypeDef
USBD_LL_IsoINIncomplete(USBD_HandleTypeDef
*pdev, uint8_t epnum)

Handle Incomplete ISO IN transaction
Event

USBD_StatusTypeDef
USBD_LL_IsoOUTIncomplete(USBD_HandleTypeDef
*pdev, uint8_t epnum)

Handle Incomplete ISO OUT transaction
Event

USBD_StatusTypeDef
USBD_LL_DevConnected(USBD_HandleTypeDef *pdev)

Notify about device connection from ISR

USBD_StatusTypeDef
USBD_LL_DevDisconnected(USBD_HandleTypeDef
*pdev)

Notify about device disconnection from
ISR

Table 10. usbd_ioreq (.c,.h) files functions

Functions Description

USBD_StatusTypeDef

USBD_CtlSendData (USBD_HandleTypeDef *pdev,
uint8_t *pbuf,uint16_t len)

Sends the data on the control pipe

USBD_StatusTypeDef

USBD_CtlContinueSendData (USBD_HandleTypeDef
*pdev, uint8_t *pbuf, uint16_t len)

Continues sending data on the control
pipe.

USBD_StatusTypeDef

USBD_CtlPrepareRx (USBD_HandleTypeDef
*pdev,uint8_t *pbuf, uint16_t len)

Prepares the core to receive data on the
control pipe.

Table 9. usbd_core (.c,.h) files (continued)

Functions Description

USB device library overview UM1734

26/56 DocID025934 Rev 1

USBD_StatusTypeDef USBD_CtlContinueRx
(USBD_HandleTypeDef *pdev, uint8_t *pbuf, uint16_t len)

Continues receiving data on the control
pipe.

USBD_StatusTypeDef

USBD_CtlSendStatus (USBD_HandleTypeDef *pdev)
Sends a zero length packet on the
control pipe.

USBD_StatusTypeDef USBD_CtlReceiveStatus
(USBD_HandleTypeDef *pdev)

Receives a zero length packet on the
control pipe.

uint16_t USBD_GetRxCount (USBD_HandleTypeDef
*pdev , uint8_t ep_addr)

Returns the received data length

Table 11. usbd_ctrlq (.c,.h) files functions

Functions Description

USBD_StatusTypeDef

USBD_StdDevReq (USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles standard USB device
requests.

USBD_StatusTypeDef

USBD_StdItfReq (USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles standard USB interface
requests

USBD_StatusTypeDef

USBD_StdEPReq (USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles standard USB endpoint
requests

static void USBD_GetDescriptor(USBD_HandleTypeDef
*pdev ,USBD_SetupReqTypedef *req) Handles Get Descriptor requests.

static void USBD_SetAddress(USBD_HandleTypeDef
*pdev , USBD_SetupReqTypedef *req)

Sets new USB device address.

static void USBD_SetConfig(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles Set device configuration
request

static void USBD_GetConfig(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles Get device configuration
request.

static void USBD_GetStatus(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles Get Status request.

static void USBD_SetFeature(USBD_HandleTypeDef
*pdev, USBD_SetupReqTypedef *req)

Handles Set device feature request

static void USBD_ClrFeature(USBD_HandleTypeDef
*pdev, USBD_SetupReqTypedef *req)

Handles Clear device feature request.

void USBD_CtlError(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles USB Errors on the control
pipe.

void USBD_GetString(uint8_t *desc, uint8_t *unicode,
uint16_t *len)

 Convert Ascii string into unicode one

static uint8_t USBD_GetLen(uint8_t *buf) Return the string length

void USBD_ParseSetupRequest
(USBD_SetupReqTypedef *req, uint8_t *pdata)

Copies request buffer into setup
structure.

Table 10. usbd_ioreq (.c,.h) files functions (continued)

Functions Description

DocID025934 Rev 1 27/56

UM1734 USB device library overview

55

6.3 USB device class interface

The USB class is chosen during the USB device library initialization by selecting the
corresponding class callback structure. The class structure is defined as follows:

USB Class callback structure

● Init: this callback is called when the device receives the set configuration request; in this
function the endpoints used by the class interface are open.

● DeInit: This callback is called when the clear configuration request has been received;
this function closes the endpoints used by the class interface.

● Setup: This callback is called to handle the specific class setup requests.

● EP0_TxSent: This callback is called when the send status is finished.

● EP0_RxSent: This callback is called when the receive status is finished.

● DataIn: This callback is called to perform the data in stage relative to the non-control
endpoints.

● DataOut: This callback is called to perform the data out stage relative to the non-control
endpoints.

● SOF: This callback is called when a SOF interrupt is received; this callback can be used to
synchronize some processes with the Start of frame.

● IsoINIncomplete: This callback is called when the last isochronous IN transfer is

typedef struct _Device_cb

{

 uint8_t (*Init) (struct _USBD_HandleTypeDef *pdev ,
uint8_t cfgidx);

 uint8_t (*DeInit) (struct _USBD_HandleTypeDef *pdev ,
uint8_t cfgidx);

 /* Control Endpoints*/

 uint8_t (*Setup) (struct _USBD_HandleTypeDef *pdev ,
USBD_SetupReqTypedef *req);

 uint8_t (*EP0_TxSent) (struct _USBD_HandleTypeDef *pdev);

 uint8_t (*EP0_RxReady) (struct _USBD_HandleTypeDef *pdev);

 /* Class Specific Endpoints*/

 uint8_t (*DataIn) (struct _USBD_HandleTypeDef *pdev ,
uint8_t epnum);

 uint8_t (*DataOut) (struct _USBD_HandleTypeDef *pdev ,
uint8_t epnum);

 uint8_t (*SOF) (struct _USBD_HandleTypeDef *pdev);

 uint8_t (*IsoINIncomplete) (struct _USBD_HandleTypeDef *pdev ,
uint8_t epnum);

 uint8_t (*IsoOUTIncomplete) (struct _USBD_HandleTypeDef *pdev ,
uint8_t epnum);

 uint8_t *(*GetHSConfigDescriptor)(uint16_t *length);

 uint8_t *(*GetFSConfigDescriptor)(uint16_t *length);

 uint8_t *(*GetOtherSpeedConfigDescriptor)(uint16_t *length);

 uint8_t *(*GetDeviceQualifierDescriptor)(uint16_t *length);

} USBD_ClassTypeDef;

USB device library overview UM1734

28/56 DocID025934 Rev 1

incomplete.

● IsoOUTIncomplete: This callback is called when the last isochronous OUT transfer is

incomplete.

● GetHSConfigDescriptor: This callback returns the HS USB Configuration descriptor.

● GetFSConfigDescriptor: This callback returns the FS USB Configuration descriptor.

● GetOtherSpeedConfigDescriptor: This callback returns the other configuration
descriptor of the used class in High Speed mode.

● GetDeviceQualifierDescriptor: This callback returns the Device Qualifier Descriptor.

The library provides also descriptor callback structures to allow user to manage the device
and string descriptors at application run time. This descriptors structure is defined as
follows:

USB device descriptors structure

● GetDeviceDescriptor: This callback returns the device descriptor.

● GetLangIDStrDescriptor: This callback returns the Language ID string descriptor.

● GetManufacturerStrDescriptor: This callback returns the manufacturer string

descriptor.

● GetProductStrDescriptor: This callback returns the product string descriptor.

● GetSerialStrDescriptor: This callback returns the serial number string descriptor.

● GetConfigurationStrDescriptor: This callback returns the configuration string

descriptor.

● GetInterfaceStrDescriptor: This callback returns the interface string descriptor.

Note: The usbd_desc.c file provided within USB Device examples implement these callback
bodies.

typedef struct

{

 uint8_t *(*GetDeviceDescriptor)(USBD_SpeedTypeDef speed ,
uint16_t *length);

 uint8_t *(*GetLangIDStrDescriptor)(USBD_SpeedTypeDef speed ,
uint16_t *length);

 uint8_t *(*GetManufacturerStrDescriptor)(USBD_SpeedTypeDef speed
, uint16_t *length);

 uint8_t *(*GetProductStrDescriptor)(USBD_SpeedTypeDef speed ,
uint16_t *length);

 uint8_t *(*GetSerialStrDescriptor)(USBD_SpeedTypeDef speed ,
uint16_t *length);

 uint8_t *(*GetConfigurationStrDescriptor)(USBD_SpeedTypeDef speed
, uint16_t *length);

 uint8_t *(*GetInterfaceStrDescriptor)(USBD_SpeedTypeDef speed ,
uint16_t *length);

} USBD_DescriptorsTypeDef;

DocID025934 Rev 1 29/56

UM1734 USB device library class module

55

7 USB device library class module

The class module contains all the files related to the class implementation. It complies with
the specification of the protocol built in these classes. The table below presents the USB
device class file for the MSC, HID, DFU, Audio, CDC classes.

7.0.1 HID class

HID class implementation

This module manages the HID class V1.11 following the “Device Class Definition for Human
Interface Devices (HID) Version 1.11 June 27, 2001".

The HID specification can be found searching for “hidpage” at the following web address:
www.st.com.

Table 12. USB device class files

Class Files Description

HID usbd_hid (.c, .h)
This file contains the HID class callbacks (driver) and the
configuration descriptors relative to this class.

MSC

usbd_msc(.c, .h)
This file contains the MSC class callbacks (driver) and
the configuration descriptors relative to this class.

usbd_bot (.c, .h) This file handles the bulk only transfer protocol.

usbd_scsi (.c, .h) This file handles the SCSI commands.

usbd_msc_data (.c,.h)
This file contains the vital inquiry pages and the sense
data of the mass storage devices.

usbd_msc_storage_template
(.c,.h)

This file provides a template driver which allows you to
implement additional functions for MSC.

DFU

usbd_dfu (.c,.h)
This file contains the DFU class callbacks (driver) and
the configuration descriptors relative to this class.

usbd_dfu_media_template_if
(.c,.h)

This file provides a template driver which allows you to
implement additional memory interfaces.

Audio

usbd_audio (.c,.h)
This file contains the AUDIO class callbacks (driver) and
the configuration descriptors relative to this class.

usbd_audio_if_template
(.c,.h)

This file provides a template driver which allows you to
implement additional functions for Audio.

CDC

usbd_cdc (.c,.h)
This file contains the CDC class callbacks (driver) and
the configuration descriptors relative to this class.

usbd_cdc_if_template (.c,.h)
This file provides a template driver which allows you to
implement low layer functions for a CDC terminal.

Custom
HID

usbd_customhid (.c,.h)
This file contains the Custom HID class callbacks (driver)
and the configuration descriptors relative to this class.

USB device library class module UM1734

30/56 DocID025934 Rev 1

This driver implements the following aspects of the specification:

• The boot interface subclass

• The mouse protocol

• Usage page: generic desktop

• Usage: joystick

• Collection: application

HID user interface

Input reports are sent only via the Interrupt In pipe (HID mouse example).

Feature and Output reports must be initiated by the host via Control pipe or an Interrupt Out
pipe (Custom HID example)

The USBD_HID_SendReport can be used by the HUD mouse application to send HID
reports, the HID driver, in this release, handles only IN traffic. An example of use of this
function is shown below:

HID Class Driver APIs

All HID class driver APIs are defined in usbd_hid.c and summarized in the table below

Table 13. usbd_hid.c,h files

Functions Description

static uint8_t USBD_HID_Init
(USBD_HandleTypeDef *pdev, uint8_t cfgidx)

Initializes the HID interface and open the used
endpoints.

static uint8_t USBD_HID_DeInit
(USBD_HandleTypeDef *pdev, uint8_t cfgidx)

Un-Initializes the HID layer and close the used
endpoints.

static uint8_t USBD_HID_Setup
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles the HID specific requests.

 static __IO uint32_t counter=0;

 HAL_IncTick();

 /* check Joystick state every 10ms */

 if (counter++ == 10)

 {

 GetPointerData(HID_Buffer);

 /* send data though IN endpoint*/

 if((HID_Buffer[1] != 0) || (HID_Buffer[2] != 0))

 {

 USBD_HID_SendReport(&USBD_Device, HID_Buffer, 4);

 }

 counter =0;

 }

 Toggle_Leds();

}

DocID025934 Rev 1 31/56

UM1734 USB device library class module

55

The HID stack is initialized by calling the USBD_HID_Init(), Then the application has to
call the USBD_HID_SendReport()function to sends the HID reports.

The Following HID specific requests are implemented through the endpoint 0 (Control):

#define HID_REQ_SET_PROTOCOL 0x0B

#define HID_REQ_GET_PROTOCOL 0x03

#define HID_REQ_SET_IDLE 0x0A

#define HID_REQ_GET_IDLE 0x02

#define HID_REQ_SET_REPORT 0x09

#define HID_REQ_GET_REPORT 0x01

The IN endpoint address and the maximum number of bytes that can be sent are given by
these defines:

#define HID_EPIN_ADDR 0x81

#define HID_EPIN_SIZE 0x04

7.0.2 Mass storage class

Mass storage class implementation

This module manages the MSC class V1.0 following the “Universal Serial Bus Mass Storage
Class (MSC) Bulk-Only Transport (BOT) Version 1.0 Sep. 31, 1999".

This driver implements the following aspects of the specification:

• Bulk-only transport protocol

• Subclass: SCSI transparent command set (ref. SCSI Primary Commands - 3)

The USB mass storage class is built around the Bulk Only Transfer (BOT). It uses the SCSI
transparent command set.

A general BOT transaction is based on a simple basic state machine: it begins with ready
state (idle state) and if a CBW is received from the host, three cases can be managed:

• DATA-OUT-STAGE: when direction flag is set to “0”, the device must be prepared to
receive an amount of data indicated in cbw.dDataLength in the CBW block. At the end
of data transfer, a CSW is returned with the remaining data length and the STATUS
field.

• DATA-IN-STAGE: when direction flag is set to “1”, the device must be prepared to send
an amount of data indicated in cbw.dDataLength in the CBW block. At the end of data
transfer, a CSW is returned with the remaining data length and the STATUS field.

• ZERO DATA: in this case, no data stage is needed: the CSW block is sent immediately
after the CBW one.

uint8_t USBD_HID_SendReport
(USBD_HandleTypeDef *pdev, uint8_t *report,
uint16_t len)

Sends HID reports.

Table 13. usbd_hid.c,h files (continued)

Functions Description

USB device library class module UM1734

32/56 DocID025934 Rev 1

Figure 10. BOT Protocol architecture

The following table shows the supported SCSI commands.

As required by the BOT specification, the following requests are implemented:

• Bulk-only mass storage reset (class-specific request)

This request is used to reset the mass storage device and its associated interface. This
class-specific request should prepare the device for the next CBW from the host.

Table 14. SCSI commands

Command
specification

Command Remark

SCSI

SCSI_PREVENT_REMOVAL,

SCSI_START_STOP_UNIT,

SCSI_TEST_UNIT_READY,

SCSI_INQUIRY,

SCSI_READ_CAPACITY10,

SCSI_READ_FORMAT_CAPACITY,

SCSI_MODE_SENSE6,

SCSI_MODE_SENSE10

SCSI_READ10,

SCSI_WRITE10,

SCSI_VERIFY10

READ_FORMAT_CAPACITY
(0x23) is an UFI command.

DocID025934 Rev 1 33/56

UM1734 USB device library class module

55

To generate the BOT Mass Storage Reset, the host must send a device request on the
default pipe of:

• bmRequestType: Class, interface, host to device

• bRequest field set to 255 (FFh)

• wValue field set to ‘0’

• wIndex field set to the interface number

• wLength field set to ‘0’

Get Max LUN (class-specific request)

The device can implement several logical units that share common device characteristics.
The host uses bCBWLUN to indicate which logical unit of the device is the destination of the
CBW. The Get Max LUN device request is used to determine the number of logical units
supported by the device.

To generate a Get Max LUN device request, the host sends a device request on the default
pipe of:

• bmRequestType: Class, Interface, device to host

• bRequest field set to 254 (FEh)

• wValue field set to ‘0’

• wIndex field set to the interface number

• wLength field set to ‘1’

MSC Core files

Table 15. usbd_msc (.c,.h) files

Functions Description

uint8_t USBD_MSC_Init (USBD_HandleTypeDef
*pdev, uint8_t cfgidx)

Initializes the MSC interface and opens the used
endpoints.

uint8_t USBD_MSC_DeInit
(USBD_HandleTypeDef *pdev, uint8_t cfgidx)

De-initializes the MSC layer and close the used
endpoints.

uint8_t USBD_MSC_Setup
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req)

Handles the MSC specific requests.

uint8_t USBD_MSC_DataIn
(USBD_HandleTypeDef *pdev, uint8_t epnum)

Handles the MSC Data In stage.

uint8_t USBD_MSC_DataOut
(USBD_HandleTypeDef *pdev, uint8_t epnum)

Handles the MSC Data Out stage.

Table 16. usbd_msc_bot (.c,.h) files

Functions Description

void MSC_BOT_Init

(USBD_HandleTypeDef *pdev)
Initializes the BOT process and physical
media.

void MSC_BOT_Reset (USBD_HandleTypeDef
*pdev)

Resets the BOT Machine.

USB device library class module UM1734

34/56 DocID025934 Rev 1

void MSC_BOT_DeInit (USBD_HandleTypeDef
*pdev)

De-Initializes the BOT process.

void MSC_BOT_DataIn (USBD_HandleTypeDef
*pdev, uint8_t epnum)

Handles the BOT data IN Stage.

void MSC_BOT_DataOut (USBD_HandleTypeDef
*pdev, uint8_t epnum)

Handles the BOT data OUT Stage.

static void MSC_BOT_CBW_Decode
(USBD_HandleTypeDef *pdev)

Decodes the CBW command and sets the
BOT state machine accordingly.

static void
MSC_BOT_SendData(USBD_HandleTypeDef
pdev, uint8_t buf, uint16_t len)

Sends the requested data.

void MSC_BOT_SendCSW
(USBD_HandleTypeDef *pdev, uint8_t
CSW_Status)

Sends the Command Status Wrapper.

static void MSC_BOT_Abort
(USBD_HandleTypeDef *pdev)

Aborts the current transfer.

void MSC_BOT_CplClrFeature
(USBD_HandleTypeDef *pdev, uint8_t epnum)

Completes the Clear Feature request.

Table 17. usbd_msc_scsi (.c,.h)

Functions Description

int8_t SCSI_ProcessCmd(USBD_HandleTypeDef
*pdev, uint8_t lun, uint8_t *params)

Processes the SCSI commands.

static int8_t
SCSI_TestUnitReady(USBD_HandleTypeDef
*pdev, uint8_t lun, uint8_t *params)

Processes the SCSI Test Unit Ready
command.

static int8_t SCSI_Inquiry(USBD_HandleTypeDef
*pdev, uint8_t lun, uint8_t *params)

Processes the Inquiry command.

static int8_t
SCSI_ReadCapacity10(USBD_HandleTypeDef
*pdev, uint8_t lun, uint8_t *params)

Processes the Read Capacity 10 command.

static int8_t
SCSI_ReadFormatCapacity(USBD_HandleTypeDef
*pdev, uint8_t lun, uint8_t *params)

Processes the Read Format Capacity
command.

static int8_t SCSI_ModeSense6
(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*params)

Processes the Mode Sense 6 command.

static int8_t SCSI_ModeSense10
(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*params)

Processes the Mode Sense 10 command.

static int8_t SCSI_RequestSense
(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*params)

Processes the Request Sense command.

Table 16. usbd_msc_bot (.c,.h) files (continued)

Functions Description

DocID025934 Rev 1 35/56

UM1734 USB device library class module

55

Disk operation structure definition

Note: MicorSD is the default media interface provided by the library, But you can add other media
(Flash....) using the provided template file usbd_msc_storage_template.c

void SCSI_SenseCode

(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
sKey, uint8_t ASC)

Loads the last error code in the error list.

static int8_t SCSI_StartStopUnit

(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*params)

Processes the Start Stop Unit command.

static int8_t SCSI_Read10

(USBD_HandleTypeDef *pdev, uint8_t lun , uint8_t
*params)

Processes the Read10 command.

static int8_t SCSI_Write10

(USBD_HandleTypeDef *pdev, uint8_t lun , uint8_t
*params)

Processes the Write10 command.

static int8_t SCSI_Verify10

(USBD_HandleTypeDef *pdev, uint8_t lun , uint8_t
*params)

Processes the Verify10 command.

static int8_t SCSI_CheckAddressRange
(USBD_HandleTypeDef *pdev, uint8_t lun ,
uint32_t blk_offset , uint16_t blk_nbr)

Checks if the LBA is inside the address range.

static int8_t SCSI_ProcessRead
(USBD_HandleTypeDef *pdev, uint8_t lun)

Handles the Burst Read process.

static int8_t SCSI_ProcessWrite
(USBD_HandleTypeDef *pdev, uint8_t lun)

Handles the Burst Write process.

Table 17. usbd_msc_scsi (.c,.h) (continued)

Functions Description

 USBD_StorageTypeDef USBD_DISK_fops = {

 STORAGE_Init,

 STORAGE_GetCapacity,

 STORAGE_IsReady,

 STORAGE_IsWriteProtected,

 STORAGE_Read,

 STORAGE_Write,

 STORAGE_GetMaxLun,

 STORAGE_Inquirydata,

};

USB device library class module UM1734

36/56 DocID025934 Rev 1

The storage callback for MSC class is added in the user application as below:
USBD_MSC_RegisterStorage(&USBD_Device, &USBD_DISK_fops). The standard inquiry
data are given by the user inside the STORAGE_Inquirydata array. It should be defined as:

Disk operation functions

7.0.3 Device firmware upgrade (DFU) class

The DFU core manages the DFU class V1.1 following the “Device Class Specification for
Device Firmware Upgrade Version 1.1 Aug 5, 2004".

Table 18. Functions

Functions Description

int8_t STORAGE_Init (uint8_t lun) Initializes the storage medium.

int8_t STORAGE_GetCapacity (uint8_t lun,
uint32_t *block_num, uint16_t *block_size)

Returns the medium capacity and block size.

int8_t STORAGE_IsReady (uint8_t lun) Checks whether the medium is ready.

int8_t STORAGE_IsWriteProtected (uint8_t lun) Checks whether the medium is write-protected.

int8_t STORAGE_Read (uint8_t lun,

uint8_t *buf, uint32_t blk_addr,

uint16_t blk_len)

Reads data from the medium:

blk_address is given in sector unit

blk_len is the number of the sector to be
processed.

int8_t STORAGE_Write (uint8_t lun,

uint8_t *buf, uint32_t blk_addr,

uint16_t blk_len)

Writes data to the medium:

blk_address is given in sector unit

blk_len is the number of the sector to be
processed.

int8_t STORAGE_GetMaxLun (void) Returns the number of supported logical units.

int8_t STORAGE_Inquirydata[] = { /* 36 */

 /* LUN 0 */

 0x00,

 0x80,

 0x02,

 0x02,

 (STANDARD_INQUIRY_DATA_LEN - 5),

 0x00,

 0x00,

 0x00,

 'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer: 8 bytes */

 'P', 'r', 'o', 'd', 'u', 'c', 't', ' ', /* Product : 16 Bytes */

 ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ',

 '0', '.', '0','1', /* Version : 4 Bytes */

};

DocID025934 Rev 1 37/56

UM1734 USB device library class module

55

This core implements the following aspects of the specification:

• Device descriptor management

• Configuration descriptor management

• Enumeration as DFU device (in DFU mode only)

• Request management (supporting ST DFU sub-protocol)

• Memory request management (Download / Upload / Erase / Detach / GetState /
GetStatus).

• DFU state machine implementation.

Note: ST DFU sub-protocol is compliant with DFU protocol. It uses sub-requests to manage
memory addressing, command processing, specific memory operations (that is, memory
erase, etc.)

As required by the DFU specification, only endpoint 0 is used in this application.

Other endpoints and functions may be added to the application (that is, HID, etc.).

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

– Manifestation Tolerant mode

Device firmware upgrade (DFU) class implementation

The DFU transactions are based on Endpoint 0 (control endpoint) transfer. All requests and
status control are sent / received through this endpoint.

The DFU state machine is based on the following states:

The allowed state transitions are described in the specification document.

Table 19. DFU states

State State code

appIDLE 0x00

appDETACH 0x01

dfuIDLE 0x02

dfuDNLOAD-SYNC 0x03

dfuDNBUSY 0x04

dfuDNLOAD-IDLE 0x05

dfuMANIFEST-SYNC 0x06

dfuMANIFEST 0x07

dfuMANIFEST-WAIT-RESET 0x08

dfuUPLOAD-IDLE 0x09

dfuERROR 0x0A

USB device library class module UM1734

38/56 DocID025934 Rev 1

Figure 11. DFU Interface state transitions diagram

To protect the application from spurious access before initialization, the initial state of the
DFU core (after startup) is dfuERROR. Then, the host has to clear this state (by sending a
DFU_CLRSTATE request) before generating any other request.

The DFU core manages all supported requests.

DocID025934 Rev 1 39/56

UM1734 USB device library class module

55

Each transfer to the control endpoint can be considered into two main categories:

Data transfers: These transfers are used to:

• Get some data from the device (DFU_GETSTATUS, DFU_GETSTATE and
DFU_UPLOAD).

• Or, to send data to the device (DFU_DNLOAD).

No-Data transfers: These transfers are used to send control requests from host to
device (DFU_CLRSTATUS, DFU_ABORT and DFU_DETACH).

Device firmware upgrade (DFU) Class core files

usbd_dfu (.c, .h)

This driver is the main DFU core. It allows the management of all DFU requests and state
machine. It does not directly deal with memory media (managed by lower layer drivers).

Table 20. Supported requests

Request Code Details

DFU_DETACH 0x00
When bit 3 in bmAttributes (bit WillDetach) is set, the
device generates a detach-attach sequence on the bus
when it receives this request.

DFU_DNLOAD 0x01
The firmware image is downloaded via the control-write
transfers initiated by the DFU_DNLOAD class specific
request.

DFU_UPLOAD 0x02
The purpose of the upload is to provide the capability of
retrieving and archiving a device firmware.

DFU_GETSTATUS 0x03
The host employs the DFU_GETSTATUS request to
facilitate synchronization with the device.

DFU_CLRSTATUS 0x04
Upon receipt of DFU_CLRSTATUS, the device sets a
status of OK and transitions to the dfuIDLE state.

DFU_GETSTATE 0x05 This request solicits a report about the state of the device.

DFU_ABORT 0x06
The DFU_ABORT request enables the host to exit from
certain states and to return to the DFU_IDLE state.

Table 21. usbd_dfu (.c,.h) files

Functions Description

static uint8_t USBD_DFU_Init
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

Initializes the DFU interface.

static uint8_t USBD_DFU_DeInit
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

De-initializes the DFU layer.

static uint8_t USBD_DFU_Setup
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the DFU request parsing.

static uint8_t USBD_DFU_EP0_TxReady
(USBD_HandleTypeDef *pdev);

Handles the DFU control endpoint data IN stage.

static uint8_t USBD_DFU_EP0_RxReady
(USBD_HandleTypeDef *pdev);

Handles the DFU control endpoint data OUT
stage.

USB device library class module UM1734

40/56 DocID025934 Rev 1

Note: Internal Flash memory is the default demory provided by the the library. But you can add
other memories using the provided template file usbd_dfu_media_template.c

How to use the driver:

• Using the file usbd_conf.h, you can configure:

– The number of media (memories) to be supported (define
USBD_DFU_MAX_ITF_NUM).

– The application default address (where the image code should be loaded): define
USBD_DFU_APP_DEFAULT_ADD.

Call USBD_DFU_Init() function to initialize all memory interfaces and DFU state machine.

All control/request operations are performed through control endpoint 0, through the
functions: USBD_DFU_Setup() and USBD_DFU_EP0_TxReady(). These functions can be
used to call each memory interface callback (read/write/erase/get state...) depending on the
generated DFU requests. No user action is required for these operations.

To close the communication, call the USBD_DFU_DeInit() function.

Note: When the DFU application starts, the default DFU state is DFU_STATE_ERROR. This state is
set to protect the application from spurious operations before having a correct configuration

static uint8_t* USBD_DFU_GetUsrStringDesc (
USBD_HandleTypeDef *pdev, uint8_t index ,
uint16_t *length);

Manages the transfer of memory interfaces string
descriptors.

static void DFU_Detach
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the DFU DETACH request.

static void DFU_Download
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the DFU DNLOAD request.

static void DFU_Upload
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the DFU UPLOAD request.

static void DFU_GetStatus
(USBD_HandleTypeDef *pdev);

Handles the DFU GETSTATUS request.

static void DFU_ClearStatus
(USBD_HandleTypeDef *pdev);

Handles the DFU CLRSTATUS request.

static void DFU_GetState
(USBD_HandleTypeDef *pdev);

Handles the DFU GETSTATE request.

static void DFU_Abort (USBD_HandleTypeDef
*pdev);

Handles the DFU ABORT request.

static void DFU_Leave (USBD_HandleTypeDef
*pdev);

Handles the sub-protocol DFU leave DFU mode
request (leaves DFU mode and resets device to
jump to user loaded code).

Table 21. usbd_dfu (.c,.h) files (continued)

Functions Description

DocID025934 Rev 1 41/56

UM1734 USB device library class module

55

7.0.4 Audio class

This driver manages the Audio Class 1.0 following the “USB Device Class Definition for
Audio Devices V1.0 Mar 18, 98".

This driver implements the following aspects of the specification:

• Device descriptor management

• Configuration descriptor management

• Standard AC Interface Descriptor management

• 1 Audio Streaming Interface (with single channel, PCM, Stereo mode)

• 1 Audio Streaming Endpoint

• 1 Audio Terminal Input (1 channel)

• Audio Class-Specific AC Interfaces

• Audio Class-Specific AS Interfaces

• Audio Control Requests: only SET_CUR and GET_CUR requests are supported (for
Mute)

• Audio Feature Unit (limited to Mute control)

• Audio Synchronization type: Asynchronous

• Single fixed audio sampling rate (configurable in usbd_conf.h file)

Note: The Audio Class 1.0 is based on USB Specification 1.0 and thus supports only Low and Full
speed modes and does not allow High Speed transfers. Please refer to “USB Device Class
Definition for Audio Devices V1.0 Mar 18, 98" for more details.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

• Audio Control Endpoint management

• Audio Control requests other than SET_CUR and GET_CUR

• Abstraction layer for Audio Control requests (only mute functionality is managed)

• Audio Synchronization type: Adaptive

• Audio Compression modules and interfaces

• MIDI interfaces and modules

• Mixer/Selector/Processing/Extension Units (featured unit is limited to Mute control)

• Any other application-specific modules

• Multiple and Variable audio sampling rates

• Audio Out Streaming Endpoint/Interface (microphone)

Audio class implementation

The Audio transfers are based on isochronous endpoint transactions. Audio control
requests are also managed through control endpoint (endpoint 0).

In each frame, an audio data packet is transferred and must be consumed during this frame
(before the next frame). The audio quality depends on the synchronization between data
transfer and data consumption. This driver implements simple mechanism of
synchronization relying on accuracy of the delivered I2S clock. At each start of frame, the

USB device library class module UM1734

42/56 DocID025934 Rev 1

driver checks if the consumption of the previous packet has been correctly performed and
aborts it if it is still ongoing. To prevent any data overwrite, two main protections are used:

• Using DMA for data transfer between USB buffer and output device registers (I2S).

• Using multi-buffers to store data received from USB.

Based on this mechanism, if the clock accuracy or the consumption rates are not high
enough, it will result in a bad audio quality.

This mechanism may be enhanced by implementing more flexible audio flow controls like
USB feedback mode, dynamic audio clock correction or audio clock generation/control
using SOF event.

The driver also supports basic Audio Control requests. To keep the driver simple, only two
requests have been implemented. However, other requests can be supported by slightly
modifying the audio core driver.

Audio core files

usbd_audio (.c, .h)

This driver is the audio core. It manages audio data transfers and control requests. It does
not directly deal with audio hardware (which is managed by lower layer drivers).

Table 22. Audio control requests

Request Supported Meaning

SET_CUR Yes
Sets Mute mode On or Off (can also be updated to set volume
level…).

SET_MIN No NA

SET_MAX No NA

SET_RES No NA

SET_MEM No NA

GET_CUR Yes Gets Mute mode state (can also be updated to get volume level…).

GET_MIN No NA

GET_MAX No NA

GET_RES No NA

GET_MEM No NA

Table 23. usbd_audio_core (.c,.h) files

Functions Description

static uint8_t USBD_AUDIO_Init
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

Initializes the Audio interface.

static uint8_t USBD_AUDIO_DeInit
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

De-initializes the Audio interface.

static uint8_t USBD_AUDIO_Setup
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the Audio control request parsing.

DocID025934 Rev 1 43/56

UM1734 USB device library class module

55

The low layer hardware interfaces are managed through their respective driver structure:

Each audio hardware interface driver should provide a structure pointer of type
USBD_AUDIO_ItfTypeDef. The functions and constants pointed by this structure are listed
in the following sections. If a functionality is not supported by a given memory interface, the
relative field is set as NULL value.

usbd_audio_if (.c, .h)

This driver manages the low layer audio hardware. usbd_audio_if.c/.h driver manages the
Audio Out interface (from USB to audio speaker/headphone). user can calls lower layer
codec driver (i.e. stm324xg_eval_audio.c/.h) for basic audio operations (play/pause/volume
control...).

This driver provides the structure pointer:

extern USBD_AUDIO_ItfTypeDef USBD_AUDIO_fops;

static uint8_t USBD_AUDIO_EP0_RxReady
(USBD_HandleTypeDef *pdev);

Handles audio control requests data.

static uint8_t USBD_AUDIO_DataIn
(USBD_HandleTypeDef *pdev, uint8_t epnum);

Handles the Audio In data stage.

static uint8_t USBD_AUDIO_DataOut
(USBD_HandleTypeDef *pdev, uint8_t epnum);

Handles the Audio Out data stage.

static uint8_t USBD_AUDIO_SOF
(USBD_HandleTypeDef *pdev);

Handles the SOF event (data buffer update and
synchronization).

static void
AUDIO_REQ_GetCurrent(USBD_HandleTypeDe
f *pdev, USBD_SetupReqTypedef *req);

Handles the GET_CUR Audio control request.

static void
AUDIO_REQ_SetCurrent(USBD_HandleTypeDe
f *pdev, USBD_SetupReqTypedef *req);

Handles the SET_CUR Audio control request.

Table 23. usbd_audio_core (.c,.h) files (continued)

Functions Description

typedef struct

{

 int8_t (*Init) (uint32_t AudioFreq, uint32_t Volume,
uint32_t options);

 int8_t (*DeInit) (uint32_t options);

 int8_t (*AudioCmd) (uint8_t* pbuf, uint32_t size, uint8_t
cmd);

 int8_t (*VolumeCtl) (uint8_t vol);

 int8_t (*MuteCtl) (uint8_t cmd);

 int8_t (*PeriodicTC) (uint8_t cmd);

 int8_t (*GetState) (void);

}USBD_AUDIO_ItfTypeDef;

USB device library class module UM1734

44/56 DocID025934 Rev 1

Note: The usbd_audio_if_template (.c,.h) file provides a template driver which allows you to
implement additional functions for your Audio application

The Audio player state is managed through the following states:

How to use this driver

This driver uses an abstraction layer for hardware driver (i.e. HW Codec, I2S interface, I2C
control interface...). This abstraction is performed through a lower layer (i.e.
usbd_audio_if.c) which you can modify depending on the hardware available for your
application.

To use this driver:

Through the file usbd_conf.h, you can configure:

• The audio sampling rate (define USBD_AUDIO_FREQ)

Call the function USBD_AUDIO_Init() at startup to configure all necessary firmware and
hardware components (application-specific hardware configuration functions are also called
by this function). The hardware components are managed by a lower layer interface (i.e.
usbd_audio_if.c) and can be modified by user depending on the application needs.

The entire transfer is managed by the following functions (no need for user to call any
function for out transfers):

• usbd_audio_DataIn() and usbd_audio_DataOut() which update the audio buffers with
the received or transmitted data. For Out transfers, when data are received, they are
directly copied into the audiobuffer and the write buffer (wr_ptr) is incremented.

The Audio Control requests are managed by the functions USBD_AUDIO_Setup() and
USBD_AUDIO_EP0_RxReady(). These functions route the Audio Control requests to the

Table 24. usbd_audio_if (.c,.h) files

Functions Description

static int8_t Audio_Init(uint32_t AudioFreq,
uint32_t Volume, uint32_t options);

Initializes the audio interface.

static int8_t Audio_DeInit(uint32_t options);
De-initializes the audio interface and free used
resources.

static int8_t Audio_PlaybackCmd(uint8_t* pbuf,
uint32_t size, uint8_t cmd);

Handles audio player commands (play, pause…)

static int8_t Audio_VolumeCtl(uint8_t vol); Handles audio player volume control.

static int8_t Audio_MuteCtl(uint8_t cmd); Handles audio player mute state.

static int8_t Audio_PeriodicTC(uint8_t cmd);
Handles the end of current packet transfer (not
needed for the current version of the driver).

static int8_t Audio_GetState(void);
Returns the current state of the driver audio
player (Playing/Paused/Error …).

Table 25. Audio player states

State Code Description

AUDIO_CMD_START 0x01 Audio player is initialized and ready.

AUDIO_CMD_PLAY 0x02 Audio player is currently playing.

AUDIO_CMD_STOP 0x04 Audio player is stopped.

DocID025934 Rev 1 45/56

UM1734 USB device library class module

55

lower layer (i.e. usbd_audio_if.c). In the current version, only SET_CUR and GET_CUR
requests are managed and are used for mute control only.

Audio known limitations

• If a low audio sampling rate is configured (define USBD_AUDIO_FREQ below 24 kHz)
it may result in noise issue at pause/resume/stop operations. This is due to software
timing tuning between stopping I2S clock and sending mute command to the external
codec.

• Supported audio sampling rates are from: 96 kHz to 24 kHz (non-multiple of 1 kHz
values like 11.025 kHz, 22.05 kHz or 44.1 kHz are not supported by this driver). For
frequencies multiple of 1000 Hz, the Host will send integer number of bytes each frame
(1 ms). When the frequency is not multiple of 1000Hz, the Host should send non
integer number of bytes per frame. This is in fact managed by sending frames with
different sizes (i.e. for 22.05 kHz, the Host will send 19 frames of 22 bytes and one
frame of 23 bytes). This difference of sizes is not managed by the Audio core and the
extra byte will always be ignored. It is advised to set a high and standard sampling rate
in order to get best audio quality (i.e. 96 kHz or 48 kHz). Note that maximum allowed
audio frequency is 96 kHz (this limitation is due to the codec used on the Evaluation
board. The STM32 I2S cell enables reaching 192 kHz).

7.0.5 Communication device class (CDC)

This driver manages the “Universal Serial Bus Class Definitions for Communications
Devices Revision 1.2 November 16, 2007" and the sub-protocol specification of “Universal
Serial Bus Communications Class Subclass Specification for PSTN Devices Revision 1.2
February 9, 2007".

This driver implements the following aspects of the specification:

• Device descriptor management

• Configuration descriptor management

• Enumeration as CDC device with 2 data endpoints (IN and OUT) and 1 command
endpoint (IN)

• Request management (as described in section 6.2 in specification)

• Abstract Control Model compliant

• Union Functional collection (using 1 IN endpoint for control)

• Data interface class

Note: For the Abstract Control Model, this core can only transmit the requests to the lower layer
dispatcher (i.e. usbd_cdc_vcp.c/.h) which should manage each request and perform relative
actions.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

• Any class-specific aspect relative to communication classes should be managed by
user application.

• All communication classes other than PSTN are not managed.

USB device library class module UM1734

46/56 DocID025934 Rev 1

Communication

The CDC core uses two endpoint/transfer types:

• Bulk endpoints for data transfers (1 OUT endpoint and 1 IN endpoint)

• Interrupt endpoints for communication control (CDC requests; 1 IN endpoint)

Data transfers are managed differently for IN and OUT transfers:

Data IN transfer management (from device to host)

The data transfer is managed periodically depending on host request (the device specifies
the interval between packet requests). For this reason, a circular static buffer is used for
storing data sent by the device terminal (i.e. USART in the case of Virtual COM Port
terminal).

Data OUT transfer management (from host to device)

In general, the USB is much faster than the output terminal (i.e. the USART maximum
bitrate is 115.2 Kbps while USB bitrate is 12 Mbps for Full speed mode and 480 Mbps in
High speed mode). Consequently, before sending new packets, the host has to wait until the
device has finished to process the data sent by host. Thus, there is no need for circular data
buffer when a packet is received from host: the driver calls the lower layer OUT transfer
function and waits until this function is completed before allowing new transfers on the OUT
endpoint (meanwhile, OUT packets will be NACKed).

Command request management

In this driver, control endpoint (endpoint 0) is used to manage control requests. But a data
interrupt endpoint may be used also for command management. If the request data size
does not exceed 64 bytes, the endpoint 0 is sufficient to manage these requests.

The CDC driver does not manage command requests parsing. Instead, it calls the lower
layer driver control management function with the request code, length and data buffer.
Then this function should parse the requests and perform the required actions.

Communication device class (CDC) core files

usbd_cdc (.c, .h)

This driver is the CDC core. It manages CDC data transfers and control requests. It does
not directly deal with CDC hardware (which is managed by lower layer drivers).

Table 26. usbd_cdc (.c,.h) files

Functions Description

static uint8_t USBD_CDC_Init
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

Initializes the CDC interface.

static uint8_t USBD_CDC_DeInit
(USBD_HandleTypeDef *pdev, uint8_t cfgidx);

De-initializes the CDC interface.

static uint8_t USBD_CDC_Setup
(USBD_HandleTypeDef *pdev,
USBD_SetupReqTypedef *req);

Handles the CDC control requests.

static uint8_t USBD_CDC_EP0_RxReady
(USBD_HandleTypeDef *pdev);

Handles CDC control request data.

static uint8_t USBD_CDC_DataIn
(USBD_HandleTypeDef *pdev, uint8_t epnum);

Handles the CDC IN data stage.

DocID025934 Rev 1 47/56

UM1734 USB device library class module

55

The low layer hardware interfaces are managed through their respective driver structure:

Each hardware interface driver should provide a structure pointer of type
USBD_CDC_ItfTypeDef. The functions pointed by this structure are listed in the following
sections.

If a functionality is not supported by a given memory interface, the relative field is set as
NULL value.

Note: In order to get the best performance, it is advised to calculate the values needed for the
following parameters (all of them are configurable through defines in the usbd_cdc.h and
usbd_cdc_interface.h files):

static uint8_t USBD_CDC_DataOut
(USBD_HandleTypeDef *pdev, uint8_t epnum);

Handles the CDC Out data stage.

uint8_t USBD_CDC_RegisterInterface
(USBD_HandleTypeDef *pdev,
USBD_CDC_ItfTypeDef *fops)

Add CDC Interface Class

uint8_t USBD_CDC_SetTxBuffer
(USBD_HandleTypeDef *pdev, uint8_t *pbuff,
uint16_t length)

Set Application TX Buffer

uint8_t USBD_CDC_SetRxBuffer
(USBD_HandleTypeDef *pdev, uint8_t *pbuff)

Set Application RX Buffer

uint8_t
USBD_CDC_TransmitPacket(USBD_HandleTyp
eDef *pdev)

Transmission Transfer completed callback

uint8_t
USBD_CDC_ReceivePacket(USBD_HandleType
Def *pdev)

Receive Transfer completed callback

Table 26. usbd_cdc (.c,.h) files (continued)

Functions Description

typedef struct _USBD_CDC_Itf

{

 int8_t (* Init) (void);

 int8_t (* DeInit) (void);

 int8_t (* Control) (uint8_t, uint8_t * , uint16_t);

 int8_t (* Receive) (uint8_t *, uint32_t *);

}USBD_CDC_ItfTypeDef;

USB device library class module UM1734

48/56 DocID025934 Rev 1

usbd_cdc_interface (.c, .h)

This driver can be part of the user application. It is not provided in the library, but a template
usbd_cdc_if_template (.c, .h) can be used to build it and an example is provided for the
USART interface. It manages the low layer CDC hardware. The usbd_cdc_interface.c/.h
driver manages the terminal interface configuration and communication (i.e. USART
interface configuration and data send/receive).

This driver provides the structure pointer:

In order to accelerate data management for IN/OUT transfers, the low layer driver
(usbd_cdc_interface.c/.h) use these global variables:

Table 27. Configurable CDC parameters

Define Parameter
Typical value

Full Speed High Speed

CDC_DATA_HS_IN_PACKET_SIZE
/CDC_DATA_FS_IN_PACKET_SIZE

Size of each IN data packet 64 512

CDC_DATA_HS_OUT_PACKET_SI
ZE/CDC_DATA_FS_OUT_PACKET
_SIZE

Size of each OUT data packet 64 512

APP_TX_DATA_SIZE
Total size of circular temporary
buffer for OUT data transfer.

2048 2048

APP_RX_DATA_SIZE
Total size of circular temporary
buffer for IN data transfer.

2048 2048

Table 28. usbd_cdc_interface (.c,.h) files

Functions Description

static int8_t CDC_Itf_Init

(void);
Initializes the low layer CDC interface.

static int8_t CDC_Itf_DeInit

(void);
De-initializes the low layer CDC interface.

static int8_t CDC_Itf_Control

(uint8_t cmd, uint8_t* pbuf, uint16_t length);
Handles CDC control request parsing and
execution.

static int8_t CDC_Itf_Receive

(uint8_t* pbuf, uint32_t *Len);
Handles CDC data reception from USB host to
low layer terminal (OUT transfers).

USBD_CDC_ItfTypeDef USBD_CDC_fops =

{

 CDC_Itf_Init,

 CDC_Itf_DeInit,

 CDC_Itf_Control,

 CDC_Itf_Receive

};

DocID025934 Rev 1 49/56

UM1734 USB device library class module

55

How to use this driver

This driver uses an abstraction layer for hardware driver (i.e. USART control interface...).
This abstraction is performed through a lower layer (i.e. stm32fxxx_hal_msp.c) which you
can modify depending on the hardware available for your application.

To use this driver:

Through the file usbd_cdc.h and usbd_cdc_interface.h you can configure:

• The Data IN and OUT and command packet sizes (defines
CDC_DATA_XX_IN_PACKET_SIZE, CDC_DATA_XX_OUT_PACKET_SIZE)

• The size of the temporary circular buffer for IN/OUT data transfer (define
APP_RX_DATA_SIZE and APP_TX_DATA_SIZE).

• The device string descriptors.

Call the function USBD_CDC_Init() at startup to configure all necessary firmware and
hardware components (application-specific hardware configuration functions are called by
this function as well). The hardware components are managed by a lower layer interface
(i.e. usbd_cdc_interface.c) and can be modified by user depending on the application
needs.

CDC IN and OUT data transfers are managed by two functions:

• USBD_CDC_SetTxBuffer should be called by user application each time a data (or a
certain number of data) is available to be sent to the USB Host from the hardware
terminal.

• USBD_CDC_SetRxBuffer is called by the CDC core each time a buffer is sent from the
USB Host and should be transmitted to the hardware terminal. This function should exit
only when all data in the buffer are sent (the CDC core then blocks all coming OUT
packets until this function finishes processing the previous packet).

CDC control requests should be handled by the function CDC_Itf_Control() . This function is
called each time a request is received from Host and all its relative data are available if any.
This function should parse the request and perform the needed actions.

To close the communication, call the function USBD_CDC_DeInit(). This closes the used
endpoints and calls lower layer de-initialization functions.

Table 29. Variables used by usbd_cdc_xxx_if.c/.h

Variable Usage

uint8_t

UserRxBuffer[APP_RX_DATA_SIZE]

Writes CDC received data in this buffer. These data
will be sent over USB IN endpoint in the CDC core
functions.

uint32_t UserTxBufPtrOu
Increments this pointer or rolls it back to start the
address when writing received data in the buffer
UserRxBuffer.

uint8_t

UserTxBuffer[APP_TX_DATA_SIZE]

Writes CDC received data in this buffer. These data
will be sent over USB OUT endpoint in the CDC core
functions.

UserTxBufPtrIn
Increment this pointer or roll it back to start address
when data are received over USART

USB device library class module UM1734

50/56 DocID025934 Rev 1

CDC known limitations

When using this driver with the OTG HS core, enabling DMA mode (define
USB_OTG_HS_INTERNAL_DMA_ENABLED in usb_conf.h file) results in data being sent
only by multiple of 4 bytes. This is due to the fact that USB DMA does not allow sending
data from non word-aligned addresses. For this specific application, it is advised not to
enable this option unless required.

7.0.6 Adding a custom class

This section explains how to create a new custom class based on an existing USB class.

The creation of a new custom Class requires some steps:

• The user has to add USBD_CustomClass_cb (In order to receive various USB bus
Events) as described in Section 6.3, in the usbd_template.c/.h available under
Class/Template directory. This template contains all the functions that should be
adapted to the application's needs and may be also used to implement any type of
USB Device class.

• Customizing the Descriptors : Descriptors retrieved by the host must be configured to
describe a device as following the specifications for the application class devices. The
following list is not complete but gives an overview about the various descriptors that
may be required:

• Standard device descriptor

• Standard configuration descriptor

• Standard interface descriptor for the Class that is implemented

• Standard endpoint descriptors for IN and OUT endpoints

• The firmware must configure the STM32 to enable USB transfer (isochronous, Bulk,
Interrupt or Control) depending on the user application here below some details:

• In the DataIn and DataOut functions, the user can implement the internal protocol or
state machine

• In the Setup; the class specific requests are to be implemented. The configuration
descriptor is to be added as an array and passed to the USB device library.

• Through the GetConfigDescriptor function which should return a pointer to the USB
configuration descriptor and its length.

• Additional functions could be added as the IsoINIncomplete and IsoOUTIncomplete
could be eventually used to handle incomplete isochronous transfers (for more
information, refer to the USB audio device example).

• EP0_TxSent and EP0_RxReady could be eventually used when the application needs
to handle events occurring before the Zero Length Packets (see the DFU example).

• Memory allocation process: Memory is allocated to the applications using the malloc
(USBD_malloc):

• USBD_malloc(sizeof (USBD_CUSTOM_CLASS_HandleTypeDef)): this is dynamically
allocates memory for a Class structure

DocID025934 Rev 1 51/56

UM1734 USB device library class module

55

7.0.7 Library footprint optimization

In this section we review some basic tips about how to optimize the footprint of an
application developed on top of the USB device library.

Reducing the USB examples footprint is important objective especially for STM32 products
with reduced Flash/RAM memory size, as example the STM32 L0 and F0 series.

• Reduce the heap and stack size settings (in the Linker file)

The stack is the memory area where a program stores, for example:

– Local variables

– Return addresses

– Function arguments

– Compiler temporaries

– Interrupt contexts

If your linker configuration reserves large amounts heap and stack, larger than necessary
for your application you can possibly determine properly the appropriate sizes.

• Whenever possible use local instead if global variables

If a variable is used only in a function, then it should be declared inside the function as a
local variable.

• Constant should be allocated in the flash

It is recommended to allocate all constant global variables, which never change, to a read-
only section. As example, the USB descriptors are declared as constant using the C
keyword “const”.

USB device library class module UM1734

52/56 DocID025934 Rev 1

• Use static memory allocation rather than malloc

The USB device library uses dynamic memory allocation for a class handle structure to
allow multi-instance support (in case of the dual core operation), this means for example we
can have same USB class used for the two instances of the USB (HS and FS).

The secondary reason for using dynamic allocation is to allow freeing memory when USB is
no more used.

However dynamic memory allocation adds some footprint overhead, mainly for the ROM
memory. For this it’s advised to use static allocation for the low memory STM32 devices or
when multi-instance support is not needed. In that case it’s necessary to declare a static
buffer having the size of the class handle structure.

Below an example of implementation:

1. in usbd_conf.h file, define the memory static allocation and routines;
USBD_static_malloc()and USBD_static_free()

#define MAX_STATIC_ALLOC_SIZE 4 /* HID Class structure size */

#define USBD_malloc (uint32_t *)USBD_static_malloc

#define USBD_free USBD_static_free

2. and the implementation is done in usbd_conf.c file as below:

DocID025934 Rev 1 53/56

UM1734 Frequently-asked questions

55

8 Frequently-asked questions

1. How can the Device and string descriptors be modified on-the-fly?

In the usbd_desc.c file, the descriptor relative to the device and the strings can be
modified using the Get Descriptor callbacks. The application can return the correct
descriptor buffer relative to the application index using a switch case statement.

2. How can the mass storage class driver support more than one logical unit
(LUN)?

In the usbd_msc_storage_template.c file, all the APIs needed to use physical media
are defined. Each function comes with the “LUN” parameter to select the addressed
media.

The number of supported LUNs can be changed using the define
STORAGE_LUN_NBR in the usbd_msc_storage_xxx.c file (where, xxx is the medium
to be used).

For the inquiry data, the STORAGE_Inquirydata buffer contains the standard inquiry
data for each LUN.

Example: 2 LUNs are used
const int8_t STORAGE_Inquirydata[] = {

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'm', 'i', 'c', 'r', 'o', 'S', 'D', ' ', /* Product:
16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

Frequently-asked questions UM1734

54/56 DocID025934 Rev 1

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'N', 'a', 'n', 'd', ' ', ' ', ' ', ' ', /* Product:
16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

};

3. Where endpoints address are defined ?

Endpoints address are defined in the header file of the class driver. In the case of the
MSC demo case for example, the IN/OUT endpoints address are defined in the
usbd_msc.h file as below:
#define MSC_EPIN_ADDR 0x81 For Endpoint 1 IN

#define MSC_EPOUT_ADDR 0x01 For Endpoint 1 OUT

4. Can the USB device library be configured to run in either High Speed or Full
Speed mode ?

Yes, the library can handle the USB OTG HS and USB OTG FS core, if the USB OTG
FS core can only work in Full Speed mode, the USB OTG HS can work in High or Full
Speed mode.

To select the appropriate USB Core to work with, user must add the following macro
defines within the compiler preprocessor (already done in the preconfigured projects
provided with the examples):

- "USE_USB_HS" when using USB High Speed (HS) Core

- "USE_USB_FS" when using USB Full Speed (FS) Core

- "USE_USB_HS" and "USE_USB_HS_IN_FS" when using USB High Speed (HS)
Core in FS mode

5. How can the used endpoints be changed in the USB device class driver ?

To change the endpoints or to add a new endpoint:

a) Perform the endpoint initialization using USBD_LL_OpenEP().

b) Configure the TX or the Rx FIFO size of the new defined endpoints in the
usb_conf.c file using these APIs in the USBD_LL_Init() function

- For STM32F2 and STM32F4 series (FS and HS cores):

 HAL_PCD_SetRxFiFo();

 HAL_PCD_SetTxFiFo();

The total size of the Rx and Tx FIFOs should be lower than the Total FIFO size of

the used core (320 x 32 bits for USB OTG FS core and 1024 x 32 bits for the USB
OTG HS core).

- For STM32F0, STM32L0, STM32F1 and STM32F3 series (FS core only):
 HAL_PCD_PMA_Config();

6. Is the USB device library compatible with Real Time operating system (RTOS) ?

Yes, The USB device library could be used with RTOS, the CMSIS RTOS wrapper is
used to make abstraction with OS kernel.

DocID025934 Rev 1 55/56

UM1734 Revision history

55

9 Revision history

Table 30. Document revision history

Date Revision Changes

27-May-2014 1 Initial release.

UM1734

56/56 DocID025934 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 STM32Cube overview
	Figure 1. STM32Cube block diagram

	2 Preface
	2.1 Acronyms and abbreviations
	Table 1. List of terms

	2.2 Additional Information
	2.3 References

	3 Introduction
	3.1 Overview
	3.2 Features
	Figure 2. STM32Cube USB device library

	4 USB device library architecture
	4.1 Architecture overview
	Figure 3. USB device library architecture

	5 USB OTG Hardware Abstraction Layer
	5.1 Driver architecture
	Figure 4. Driver architecture overview

	5.2 USB driver programming manual
	5.2.1 Configuring USB driver structure
	Figure 5. USBD_HandleTypedef
	Table 2. USB device status

	6 USB device library overview
	Figure 6. USB device library directory structure
	6.1 USB device library description
	6.1.1 USB device library flow
	Table 3. Standard requests
	Figure 7. USB device library process flowchart

	6.1.2 USB device data flow
	Figure 8. USB device data flow

	6.1.3 Core interface with low level driver
	Table 4. API description

	6.1.4 USB device library interfacing model
	Figure 9. USB device library interfacing model
	Table 5. Low level Event Callback functions

	6.1.5 Configuring the USB device firmware library
	Table 6. USB library configuration

	6.1.6 USB control functions

	6.2 USB device library functions
	Table 7. USB device core files
	Table 8. Class drivers files
	Table 9. usbd_core (.c,.h) files
	Table 10. usbd_ioreq (.c,.h) files functions
	Table 11. usbd_ctrlq (.c,.h) files functions

	6.3 USB device class interface

	7 USB device library class module
	Table 12. USB device class files
	7.0.1 HID class
	Table 13. usbd_hid.c,h files

	7.0.2 Mass storage class
	Figure 10. BOT Protocol architecture
	Table 14. SCSI commands
	Table 15. usbd_msc (.c,.h) files
	Table 16. usbd_msc_bot (.c,.h) files
	Table 17. usbd_msc_scsi (.c,.h)
	Table 18. Functions

	7.0.3 Device firmware upgrade (DFU) class
	Table 19. DFU states
	Figure 11. DFU Interface state transitions diagram
	Table 20. Supported requests
	Table 21. usbd_dfu (.c,.h) files

	7.0.4 Audio class
	Table 22. Audio control requests
	Table 23. usbd_audio_core (.c,.h) files
	Table 24. usbd_audio_if (.c,.h) files
	Table 25. Audio player states

	7.0.5 Communication device class (CDC)
	Table 26. usbd_cdc (.c,.h) files
	Table 27. Configurable CDC parameters
	Table 28. usbd_cdc_interface (.c,.h) files
	Table 29. Variables used by usbd_cdc_xxx_if.c/.h

	7.0.6 Adding a custom class
	7.0.7 Library footprint optimization

	8 Frequently-asked questions
	9 Revision history
	Table 30. Document revision history

