
Improving Population Estimation From Mobile
Calls: a Clustering Approach

Patrizio Dazzi§, Matteo Dell’Amico‡, Lorenzo Gabrielli§, Alessandro Lulli∗§,
Pietro Michiardi‖, Mirco Nanni§, Laura Ricci∗§
∗University of Pisa, Italy {surname}@di.unipi.it
§ISTI, CNR, Pisa, Italy {name.surname}@isti.cnr.it

‡Symantec Research Labs {name surname}@symantec.com
‖EURECOM, Campus SophiaTech, France, {name.surname}@eurecom.fr

Abstract—Statistical authorities promote and safeguard the
production and publication of official statistics that serve the
public good. One of their duties is to monitor the presence
of individuals region by region. Traditionally this activity has
been conducted by means of censuses and surveys. Nowadays
technologies open new possibilities such as a continuous sensing
of the presences by leveraging the data associated to mobile
devices, e.g., the behaviour of users on doing calls. In this paper
first we propose a specifically conceived similarity function able
to capture similarity between individuals call behaviours. Second
we make use of a clustering algorithm able to handle arbitrary
metric leading to a good internal and external consistency of
clusters. The approach provides better population estimation
with respect to state of the art comparing with real census data.
The scalability and flexibility that characterises the proposed
framework enables novel scenarios for the characterization of
people by means of data derived from mobile users, ranging from
the nearly-realtime estimation of presences to the definition of
complex, uncommon user archetypes.

I. INTRODUCTION

Nowadays, mobile phones have an unprecedented rate of
penetration across the world: most people almost always have
mobile devices with them. As a consequence, the information
that can be derived from their movements and presence has
been successfully exploited on many fields, such as traffic
monitoring or tourist movements analysis.

Our goal is to define methodologies, tools, conceptual and
technological frameworks supporting the modelling of user
behaviour by leverage the information available at the level
of the telecom infrastructure (e.g., calls, SMS, etc.). The
underlying idea is to characterize the mobility of the user just
relying on network link level information (e.g. micro-cell),
without requiring any kind of interaction with the software and
the specific hardware of the mobile device (e.g., GPS). The
ultimate aim is to provide a set of instruments able to estimate
the amount of people living in a certain region, the ones that
are used to travel into that region (commuters) and the ones
occasionally visiting that region (visitors). To conduct this kind
of analysis is of paramount importance to rely on tools able to
manipulate and extract meaningful information from that data.
In this scenario, the definition of a proper clustering algorithms
is crucial.

In a previous work by some of the authors of this paper [1],
the algorithm adopted for data clustering was K-means. K-

means is one of the most popular clustering algorithm and a
common choice in many cases, due to its ease of use. As matter
of fact, it is not free from weakness. First of all, it requires to
pre-define the number of clusters (the K parameter), that in
the general case, is not a straightforward choice. Additionally,
K-means clusters all the data, not being able to discriminate
against noise data, that characterize most of the real-world
datasets. As a consequence, this leads to include in the clusters
a sensible amount of noise, which affect the quality of the
results and the compactness of clusters. A further aspect of
K-means that limits its flexibility, relates with the distance
metrics adopted, that can not be different from the euclidean
one. Beyond the “functional” limitation of K-means, from
the non-functional viewpoint, it is very challenging to design
scalable distributed clustering algorithms. In fact, albeit K-
means is in principle easy to parallelize, it suffers of a large
runtime when K is large, and requires a large number of
similarity computations.

To overcome the aforementioned limitations and address
the issues underpinning the paper, in this work we propose
Muchness a framework that is able to estimate the number
of residents, commuters and visitors in a given region by
exploiting mobile phone data. To this end, this paper provides
a set of different contributions:

• similarity metric: we defined personalized metrics able to
capture similarities on the temporal calling behaviour of
the users as well as the number of calls performed;

• clustering algorithm: we inject our metrics on an algo-
rithm originally conceived for text clustering [2] and we
adapt it to be suitable to our data;

• real data: we estimate the population on Tuscany and
compare the result with state of the art [1] [3] using real
data from Italian national institute of statistics.

This remaining of this paper is organized as follows: Sec-
tion II introduces the related works, Section III describes the
analytical framework while Section IV presents the results we
have obtained. Section V details the impact of the research
and the future works.

II. BACKGROUND

In this section we present works related to ours that use
mobile data as well as few clustering approaches related to



our approach. Mobile phones traces have been utilized to
monitor the traffic in cities and analyse tourists movements. In
particular two popular works focus on this issues for the cities
of Rome [4] and Graz [5]. Other works identify places that
could be considered as meaningful by mobile users as work
and home points [6]. In addition, a plethora of works, for
instance the winner of the Nokia Mobile Data Challenge [7],
build predictors able to determine the next position of an indi-
vidual given the current context. The idea of exploiting mobile
phone data for estimating density of population has been first
investigated by Deville et al. [3] that propose a framework
called MP. According to such methodology, the density of a
population is estimated as a function of the night-time phone
calls occurring in a given area. However, a simple rule-based
approach to identify the user presence may hinder to derive
some more useful information obtainable by conducting a
deeper analysis on the calling data to derive the behaviour of
users. For instance, it would be cumbersome to define rules
able to characterize individuals that are Commuters or Visitors.

To overcome the aforementioned limitations, in a seminal
work Furletti et al. [8] defined how to build individual pro-
files based on mobile phone calls. Such profiles character-
ize the calling behaviour of a user, in different time slots.
By analysing these profiles, it is possible to identify three
categories of users: Residents, Commuters or Visitors. So-
ciometer [1] focuses on this characterization to aggregate users
having a similar calling behaviour with the K-means clustering
algorithm. The centroid of each cluster is compared with pre-
defined archetypes representing the categories of interest, then,
each cluster is classified by means of the associated archetype.
Hereafter we use the term exemplar to refer to the cluster’s
centroid. This work advances the achievements of Sociometer
in the following areas: (i) it performs experiments on a large
Italian region (Tuscany) instead of focusing on just two cities
(Pisa and Paris); (ii) it provides a scalable distributed approach
which can process a sensibly larger collection of data; (iii) it
defines a personalized similarity metric that leads to better
clustering results; (iv) it automatically removes outliers to
improve the overall quality and to provide a better estimation
of the population; (v) it does not require to provide in advance
the number of clusters as in K-means.

Since our work is based on a distributed clustering algorithm
it is worth to present a brief comparison covering a few
of the widely used categories of clustering algorithm. One
of the most popular clustering algorithm is K-means that
iteratively aggregates data around K centroids. It has three
main limitations: the K parameter has to be user-provided, the
distance used to measure data points is limited to the euclidean
distance, it has a bias on the initial selection of centroids.
Moreover, despite parallel and distributed implementations of
K-means exist, they suffer of longer running time when K
is large due to the large number of comparisons. Another
interesting class of clustering algorithm falls in the dbscan
family, defined by Ester et al. [9]. The underpinning idea
is to cluster items that have at least MINPTS neighbours at
maximum distance ε. The main advantages against K-means

TABLE I: Overview of frameworks to estimate population

Name Method Residents Commuters
MP [3] rules on each data yes no
Sociometer [1] clustering K-means yes yes
Muchness clustering k-NN based yes yes

are the following: (i) it is not required to know the number
of clusters in advantage; (ii) the ability to cluster items with
complex shapes instead of aggregating items that are simply
close (according to the euclidean distance) to a centroid. MR-
dbscan [10] has been the first proposal targeting a distributed
implementation of dbscan, realized as a 4-stage MapReduce
algorithm.

Recently, it has been proposed a distributed clustering
algorithm based on nearest neighbour graphs [2] able to deal
with arbitrary similarity metrics. This is at the basis of the
approach presented in this paper because it is possible to
inject the metrics defined in Muchness. Albeit this clustering
algorithm is suitable for our scenario, it needs to be adapted
to our case, since the original algorithm was only tested on
text data exploiting the JaroWinkler metric. In addition, our
approach returns an exemplar for each cluster to help data
scientists to recognize the typology of the clusters without
checking each element.

III. MUCHNESS: A FRAMEWORK FOR CENSUS

As we stated above, we propose to derive statistics about
population by clustering individuals having similar phone
calling behaviour. Then, we analyse the clusters and classify
each one as resident, commuter or visitor.

With respect to state-of-the-art approaches, our clustering
algorithm provides the following advantages: (i) it is scalable
and designed for a distributed environment; (ii) does not
require to know the number of clusters in advance; (iii) it
is able to handle outliers; (iv) it supports arbitrary similarity
metrics; Muchness is inspired by two previous works: a k-NN
based text clustering algorithm [2] and Sociometer [1] and
brings the benefits of both. In the next sections we describe
how the data are collected and aggregated, the details of
the clustering algorithm and the metrics used to aggregate
individuals having similar behaviours.

A. Data description

Telco operators know the micro-cells connecting each of
their customers to the network, however, usually they only col-
lect call data records they need for billing purpose. Operatively
this means that for each customer they collect information
about the cells from which such customer makes calls. Each
record consists of a tuple having the anonymous identifier of
the user, the call timestamps and the cell id. To perform our
experiments, we conducted a spatio-temporal aggregation of
call data records within Tuscany (Italy). We manage around
2.6 mln records representing calls generated by about 800k
individuals from 115 different municipalities. A municipality
is an administrative tessellation of the territory. Our data
span between municipalities having a density of population



1 2

53

6 7

4

1 2

53

6 7

4

1 2

53

6 7

4

1 4

3 6

5 7

A B C D E
Fig. 1: Muchness analytical process. A : for each individual we assign an ICP. B : each ICP becomes a node in a graph. C : we
search for similar nodes and at the end we prune low similarity edges (dashed). D : we search for connected components and
we identify outliers (node 2). E : for each cluster we define an exemplar (icons) classified as Resident, Commuter or Visitor.

in the range 6 to 261 individuals per square kilometre. For
each user, we compute an Individual Call Profile (ICP),
following the approach defined in a paper from Furletti et
al. [8]. Such approach is based only on the temporal data,
considering only the municipalities in which a mobile phone
user perform at least one call. Each ICP is a 30-dimensional
array in which each position represents a specific time slot of
the day (morning, afternoon, evening) discriminating between
weekdays and weekends for a total of 5 weeks. A value greater
than 0 indicates that the represented user performed at least
one call in a specific time slot. The clustering algorithm takes
in input the ICPs to provide clusters of individuals and tag such
clusters as Resident, Commuter or Visitor. Such information
is eventually processed, to estimate the number of residents,
commuters and visitors.

B. The clustering algorithm

Our clustering algorithm builds upon the results achieved
in a previous work from (a subset of) the authors of this
paper. Such work provides a k-NN based text clustering
algorithm [2]. In the following of this section we provide a
brief description of the main features characterizing such work
to help understanding how to choose the correct parameter val-
ues, how to introduce specific metrics and help understanding
the improvements introduced.

1) The analytical process: Figure 1 gives an overview of
the whole analytical process. For each mobile user we build
an ICP (see column A). Then, we generate a graph of ICPs.
At the bootstrap, we randomly link each node to few other
nodes (see column B). Then, the algorithm iterates, starting
from the initial graph, adjusting the neighbourhood of each
node with most similar nodes. In the following stage, are
pruned the edges connecting nodes which similarity is below
a given threshold parameter (see column C). The resulting
clusters are the connected components [11] derived from the
pruned graph (column D). It is worth to notice how in this
phase the nodes without neighbours are identified as outliers
(Situation represented in Figure 1 by node #2). Finally, for
each cluster it is generated an exemplar (column E), used
by the automatic classifier to label the clusters as Resident,
Commuter or Visitor.

2) Parameter choice: Our proposed solution requires to
specify two parameters: k and ε. k represents the number

of neighbours for each node in the graph, it affects both the
quality and the execution time of the clustering. In general
is acceptable to set a value ∈ [5, 10] to have a good trade-
off between quality and time as suggested in Lulli et al.
paper [2]. ε is a threshold parameter that drive the edge
pruning process to avoid that very different nodes would fall
in the same cluster. The clustering algorithm starts with a
randomly connected graph and is devoted at connecting each
node to its k most similar nodes under a given similarity
measure. The similarity measure can be arbitrary. In Section
III-C we make a deep discussion on the better metrics to be
used for our problem with ICPs. The output is an approximated
nearest neighbour graph. This is pruned, based on the threshold
parameter ε, to remove low similarity edges. The idea is to
keep connections between high similarity nodes and break the
connectivity between low similarity nodes.

3) Adapting the algorithm for ICPs analysis: In this section
we describe the improvements introduced in the algorithm in
order to be suitable for ICPs data. In addition, we introduce
new functionalities to help data scientists to investigate the
data:

a) Injecting an arbitrary similarity metric: One of the
claim of the original algorithm is its ability to accommodate
arbitrary similarity measures. However, it has been tested only
with text data using the JaroWinkler similarity metric. In this
work we define specific similarity metrics that are able to
exploit the similarity between the ICPs data.

b) Exemplar definition: Due to the large size of the
dataset it is necessary to define an exemplar for each cluster.
The exemplar is the first entry point to analyse a cluster by a
manual investigation. Recall that the data is a d-dimensional
array. We define a d-dimensional array as the exemplars for
each cluster s. Each position i of the array has the value equals
to the average of the values in position i of all the elements
of the cluster s.

C. Metrics to capture ICPs similarities

In this section we discuss on the metrics to use for our
data. As introduced before, each ICP is a 30 dimensional
array representing the calling behaviour of an individual in
a municipality. We define the shape of an ICP equal to the
positions of its array where the values are greater than 0. The
shape give an idea about the presence of an individual in the



TABLE II: Similar ICPs extracted by expertises. A comparison
of similarity values using: EUC, JAC and EUC+JAC

EUC JAC EUC+JAC

Residents 0.5 1 0.8

Commuters 0.78 1 0.91

territory without considering the amount of calls performed.
The Euclidean similarity (EUC) is unable to grasp similarities
between ICPs having similar shapes. Due to this, our main
idea is to introduce a metrics able to capture the similarities
between individual sharing a common shape. Next, we present
our metrics to improve the quality of the results obtained by
the clustering and an example to exhibit its advantages on ICPs
data (Table II).

1) How to capture shapes similarity: A metric able to
capture the shape of the array is the Jaccard similarity (JAC).
In order to use JAC we modify each array in a boolean array
where we set the value 1 in position i if in position i the
data has a value greater than 0. However, the JAC takes into
account exclusively the shape of the profiles but it loses all
the informations about the weights in the array. Therefore we
combine the two similarities, the EUC and the JAC. We define
the EUC+JAC similarity as follow:

EUC+JAC(a, b) = αEUC(a, b) + (1− α)JAC(a.b) (1)

Our goal is to identify the shape of the ICPs, due to this is
acceptable to put more weight on the JAC. After a careful
analysis we identified in α = 0.4 an acceptable configuration.

2) Comparing the metrics, an example: We provide an
example supporting our idea in Table II. We select some ICPs
with the help of expertises representing two residents and
two commuters having similar shapes. Table II represents in
the first two columns the ICPs selected and in the last three
columns the similarity values using different metrics. The ICPs
have a very similar behaviour resulting in similar shapes. For
instance, take in consideration the two residents in the first row
of Table II. Although some positions have different values,
note the color darkness representing the value on a single
position of the array, they have an equal shape representing
the same calling behaviour. With the EUC we cannot assess
that the two ICPs are similar (only 0.5 similarity) however the
JAC (giving value 1) suggests that the two ICPs have identical
shapes. With our EUC+JAC we can take the benefits of both
the metrics and we obtain an high similarity of 0.8. Similar
considerations can be applied also to the commuters example.

IV. EXPERIMENTAL EVALUATION

All the experiments have been conducted on a cluster
running Ubuntu Linux 12.04 consisting of 5 nodes (1 master
and 4 slaves), each equipped with 128 Gbytes of RAM and
with a 32-core CPU, and inter-connected via a 1 Gbit Ethernet
network.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
neighbourhood similarity

10-6

10-5

10-4

10-3

10-2

10-1

100

cu
m

u
la

ti
v
e
 (

%
)

max
min

Fig. 2: How to configure Muchness: analysing the distributions
of the min and max neighbour similarity (EUC+JAC)

To implement our approach we use Apache Spark [12], our
source code is publicly available1.

To highlight the differences of Muchness with previous
approaches we make use of the following competitors:

• Sociometer [1] is the primary competitor, it is the most
similar to Muchness because are both based on clustering
and designed for the same case study;

• MP [3] targets the same problem, however is not based
on clustering and uses rules such as the calling hours to
identify if an individual is a resident;

• dbscan, we tried also an implementation2 of MR-
dbscan [10] but we are unable to cluster more than the
10% of the dataset due to memory errors due to the high
dimensionality of the ICPs.

A. How to configure Muchness

We start our evaluation helping the reader to understand
how to choose the correct values for the parameters k and ε
described in Section III-B2.

For what concerns the k value to be used for the k nearest
neighbour graph, we refer to the original algorithm for a
deeper analysis. However, as suggested by the authors, a value
∈ [5, 10] is enough to provide a good result. We tested with
values 5 and 10 and we obtained really close results in terms
of internal clustering evaluation and number of residents and
commuters identified.

Next, it is required to define the threshold parameter ε.
Recall that this parameter is used to prune all the edges below
such value before identifying the clusters. In Figure 2 we show
the cumulative distribution of the minimum and maximum
similarity in the neighbour list of each node. In particular, the
maximum value represents the nodes that became outliers. For
instance, setting the threshold parameter equals to 0.8 means
that the 90% of the node keeps at least one neighbour in the
graph (i.e. they are in the same connected component with
other nodes and not outliers). This result refers to the EUC+JAC
similarity. The distributions derived by other metrics produce
a similar shape and are not included for space constraints.
A value around 0.8 represents also the turning point of the

1https://github.com/alessandrolulli/knnMeetsConnectedComponents
2https://github.com/alitouka/spark dbscan



TABLE III: Internal clustering evaluation: Compactness and
Separation comparisons

Separation Compactness
Sociometer 0.77 0.78
Muchness (EUC) 0.67 0.76
Muchness (JAC) 0.65 0.85
Muchness (EUC+JAC) 0.72 0.87

curve and suggests how to set the threshold parameter. For
this reasons, in the following experiments we use ε = 0.8.
Note, increasing this value gives a larger number of outliers
and a larger number of clusters whereas, a lower value, prunes
less edges in the graph and keeps more connectivity resulting
in a smaller number of clusters.

Finally, we take in consideration how to set the parameter
α of our EUC+JAC similarity described in Section III-C. We
tested our approach using multiple values of α and we obtained
close results using α ∈ {0.25, 0.55} in terms of clustering
quality. In the following experiments we use α = 0.4.

B. Internal clustering evaluation

We now evaluate some internal clustering metrics:
• Compactness: measures how closely related the items in

a cluster are. We obtain the compactness by computing
the average pairwise similarity among items in each
cluster. Higher values are preferred.

• Separation: measures how well clusters are separate
from each other. Separation is obtained by computing
the average similarity between items in different clusters.
Lower values are preferred.

We compare Muchness and Sociometer because are both based
on clustering mechanisms (MP is not comparable because
does not use clustering). Table III shows the compactness and
separation values. Muchness with the EUC metric, the same
used by Sociometer, provides almost the same compactness
result. However, thanks to its ability to automatically remove
outliers it gives a better value of separation. Recall that a lower
separation value is better because means that the clusters are
more separated.

When Muchness is used with the metrics that take in con-
sideration the shape of the ICPs (JAC and EUC+JAC) it is able
to provide clusters having an higher compactness with respect
to Sociometer. This result confirms that taking in consideration
the interval of time when two different individuals perform a
call is meaningful. In particular, using the EUC+JAC similarity
we obtained the best compactness value, for this reason, in the
following experiments we use EUC+JAC similarity.

Finally, Figure 3 shows the distribution of, respectively,
compactness and separation for EUC+JAC. The 80% of the
clusters identified by Sociometer have a compactness value
lesser than 0.8, instead with Muchness only the 20%. Also,
with Muchness the 50% of the clusters have a separation lesser
than 0.7, instead with the Sociometer the 30%. This confirms
that the majority of the clusters identified by Muchness are
more separated with respect to Sociometer.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

u
la

ti
v
e
 (

%
)

muchness

sociometer

(a) Compactness(higher is better)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
similarity

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

u
la

ti
v
e
 (

%
)

muchness

sociometer

(b) Separation(lower is better)

Fig. 3: Internal clustering evaluation: Compactness and Sepa-
ration distribution (EUC+JAC)

C. Comparing with Official Statistic Bureau

In this Section we evaluate how Muchness is capable of
providing an indicator about the number of residents in a
municipal area by comparing the results with two state of the
art methods: MP and Sociometer. In addition, we evaluate also
the number of estimated commuters against Sociometer. Note,
the MP method is limited and specialized in providing only
the number of residents and does not provide a functionality
to estimate commuters. All the estimation made with mobile
phone data are rescaled using the market share of our provider.

The results are compared using official census statistics
provided by Italian national institute of statistics (Istat). In
these data we have the number of residents and commuters of
the 115 municipalities under exam.

First we analyse the overall number of residents, commuters
and visitors. Table V presents the results. MP provides a num-
ber of residents considerably lesser with respect to Muchness,
Sociometer and in particular the real data. Muchness using
the JAC similarity gives a result really close to Sociometer,
otherwise using the EUC+JAC similarity Muchness is able to
identify a larger number of residents. In addition using the
Sociometer the 60% of the clusters are classified as residents
and the size of the clusters is approximately the same. Instead,
Muchness (EUC+JAC) provides just one big cluster of residents
of nearly the 97% of the total number of residents. We think
this is a remarkable result, since this data should be analysed
by data scientists, it is useful to have a method able to correctly
aggregate near all the residents in a unique cluster.

Next, we compare these results with the real census pro-
vided by Istat. Figure 5 depicts the number of residents iden-
tified. On the Y axis is presented the density of the population
estimated. On the X axis the municipalities ordered by the
lower to the higher dense. All the methods have spikes in the
same municipalities. This suggests that although the methods
are based on different ideas: MP defines rules, Sociometer and
ours on clustering, all identify similar behaviours on the data.
It is evident that MP is always under estimating the density
with a bigger error with respect to Sociometer and Muchness.
In particular we divided the error on the estimations in 4 areas
having different population density.

Table IV presents the median error on the estimations.
Again, MP is providing the estimation affected by the larger



0 20 40 60 80 100
municipalities

10-1

100

101

102

103

104

re
si

d
e
n
ts

 p
e
r 

km
2

official residents
muchness
sociometer
mp

(a) Residents.

0 20 40 60 80 100
municipalities

10-2

10-1

100

101

102

103

104

re
si

d
e
n
ts

 p
e
r 

km
2

official commuters
muchness
sociometer

(b) Commuters.

Fig. 5: Comparing with Official Statistic Bureau: municipalities estimations

Residents ×km2

<50 50 - 100 100 - 150 >150
MP 93% 91% 92% 94%
Sociometer 39% 39% 49% 52%
Muchness 24% 29% 42% 47%

Commuters ×km2

Sociometer 83% 84% 86% 89%
Muchness 84% 83% 81% 87%

TABLE IV: Comparing with Official Statis-
tic Bureau: median estimation errors

TABLE V: Comparing with Official Statistic Bureau: number
of Residents, Commuters and Visitors

Residents Commuters Visitors
MP 74 021 N/A N/A
Sociometer 405 845 21 549 2 224 575
Muchness (EUC) 137 121 7 148 2 231 323
Muchness (JAC) 407 020 12 394 2 175 692
Muchness (EUC+JAC) 432 047 15 187 2 037 022

error. Muchness and Sociometer provide similar result for the
denser regions where the volume of data is larger and the
clustering have more informations, slightly better results for
Muchness. Instead, for less dense regions, in particular for
< 50 individuals per km2 and the range 50− 100, Muchness
provides the 10% less error with respect to Sociometer. Finally
we compare the commuters estimations of Muchness and
Sociometer. Also in this case the results are compared using
real census data. Both approaches give approximately the same
result, in terms of estimation errors, in all the scenarios.

V. CONCLUSIONS

We implemented a framework for estimating the population
in a territory using the mobile phone data. Respect to the
state of the art, we presented personalized similarity metric
to capture similarities between individual call profiles, over-
coming the limitations of existing approaches which do not
use the shape of the profiles (in particular for Residents and
Commuters). We make use of a clustering algorithm able
to handle arbitrary similarity metric. We adapt it to make it
suitable to our data and we define an exemplar for each cluster.
We showed, through a detailed experimental campaign that
our approach is able to provide better clustering compactness
and separation with respect to state of the art approaches
thanks to the ability to automatically remove outliers. Also,
we showed that we provide a better approximation of the
population density within the Italian region of Tuscany and
we are able to cluster the majority of the Residents in just one
big cluster.

Our next step it is to provide a study of the scalability of the
approach and to handle data of a bigger region. Implications
of our research are to provide to the public administration a

tool, which powered by a continuous stream of phone data, is
able to provide useful information to improve the achievements
of public services such as transportation and security of the
territory.

ACKNOWLDEGMENTS

This work is partially supported by the European Com-
munity’s H2020 Program under the scheme ’INFRAIA-
1-2014-2015: Research Infrastructures’, grant agreement
#654024 ’SoBigData: Social Mining & Big Data Ecosystem’.
(http://www.sobigdata.eu).

REFERENCES

[1] L. Gabrielli et al., “City users’ classification with mobile phone data,”
in Big Data, 2015 IEEE International Conference on. IEEE, 2015, pp.
1007–1012.

[2] A. Lulli et al., “Scalable k-nn based text clustering,” in Big Data, 2015
IEEE International Conference on. IEEE, 2015, pp. 958–963.

[3] P. Deville et al., “Dynamic population mapping using mobile phone
data,” Proceedings of the National Academy of Sciences, vol. 111, no. 45,
pp. 15 888–15 893, 2014.

[4] F. Calabrese et al., “Real-time urban monitoring using cell phones: A
case study in rome,” Intelligent Transportation Systems, IEEE Transac-
tions on, vol. 12, no. 1, pp. 141–151, 2011.

[5] C. Ratti et al., Mobile landscapes: Graz in real time. Springer, 2007.
[6] R. Ahas et al., “Using mobile positioning data to model locations

meaningful to users of mobile phones,” Journal of Urban Technology,
vol. 17, no. 1, pp. 3–27, 2010.

[7] V. Etter et al., “Where to go from here? mobility prediction from
instantaneous information,” Pervasive and Mobile Computing, vol. 9,
no. 6, pp. 784–797, 2013.

[8] B. Furletti et al., “Use of mobile phone data to estimate mobility flows.
measuring urban population and inter-city mobility using big data in an
integrated approach,” in Proceedings of the 47th Meeting of the Italian
Statistical Society, 2014.

[9] M. Ester et al., “A density-based algorithm for discovering clusters in
large spatial databases with noise.” in Kdd, 1996, pp. 226–231.

[10] Y. He et al., “Mr-dbscan: An efficient parallel density-based clustering
algorithm using mapreduce,” in Parallel and Distributed Systems, 2011
IEEE International Conference on. IEEE, 2011, pp. 473–480.

[11] A. Lulli et al., “Cracker: Crumbling large graphs into connected com-
ponents,” in Proc. of IEEE ISCC, 2015.

[12] “Apache spark,” https://spark.apache.org.


