
Static and Dynamic Big Data Partitioning
on Apache Spark

Massimiliano Bertolucci b Emanuele Carlini a Patrizio Dazzi a Alessandro Lulli a,b

Laura Ricci a,b
a Istituto di Scienze e Tecnologie dell’Informazione, CNR, Pisa, Italy
b Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. Many of today’s large datasets are organized as a graph. Due to their
size it is often infeasible to process these graphs using a single machine. Therefore,
many software frameworks and tools have been proposed to process graph on top of
distributed infrastructures. This software is often bundled with generic data decom-
position strategies that are not optimised for specific algorithms. In this paper we
study how a specific data partitioning strategy affects the performances of graph al-
gorithms executing on Apache Spark. To this end, we implemented different graph
algorithms and we compared their performances using a naive partitioning solution
against more elaborate strategies, both static and dynamic.
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Introduction

In the last years the amount of data produced worldwide has been constantly increas-
ing. For example, in 2012 were created every day 2.5 exabytes (2.5 × 1018) of data [1],
which comes from multiple and heterogeneous sources, ranging from scientific devices
to business transactions. Often, data is modelled as a graph in order to organize and
extract knowledge from it. Due to its size, it is often infeasible to process this data by
exploiting the computational and memory capacity of a single machine. To overcome
this limitation, it is common to adopt distributed computing environments. Many ap-
proaches of this kind have been designed so far. In this context, approaches based on
the MapReduce [2] paradigm are very popular and are able to efficiently exploit large
set of computing resources based on commodity hardware. The MapReduce paradigm
belongs to the wider family of structured parallel programming approaches, which orig-
inated from the proposal of Cole [3] in the late ’80s and, across the years, have been
implemented by several tools and frameworks [4,5,6,7,8]. However, despite their wide
adoption, these frameworks are not the best choices for any purpose. As a consequence,
alternative paradigms have been proposed. Some of them have been based on the BSP
bridging model [9]. A common trait shared by these frameworks [10] is that they provide
the possibility to describe graph processing applications from the point of view of a ver-
tex in the graph. These frameworks are often referred as Think Like a Vertex frameworks
(TLAV). Each vertex processes the same function independently, accessing only its local
context (usually its neighbourhood), therefore without having a global view on the graph.



As discussed by Gonzalez et al. in their GraphX paper [11], the development of efficient
algorithms through these frameworks requires to solve several non-functional issues and,
among these, the definition of proper graph partitioning strategies is of paramount impor-
tance. In fact, the authors show how the assignment of vertices to machines minimising
the number of edges crossing partitions leads to good performance with a large class of
graphs.

The findings of Gonzalez et al. are based on a static partitioning, i.e. the partitioning
is computed before starting the execution of the graph algorithm. This solution performs
well when the computation on the vertices of the input graph happens to be uniform
(e.g. the computation performs at the same rate on different vertices) or according to a
communication pattern that can be statically predicted. However, in many graph algo-
rithms the computation is not uniform and neither has a static communication pattern.
To evaluate the role of partitioning in these kind of algorithms, in this paper we con-
sider a set of different vertex-centric algorithms, characterised by different communica-
tion/computational patterns. The algorithms we studied in this paper belongs to two main
families. The first kind of algorithms assumes a static structure of the graph, i.e. it does
not change along the computation. A well known algorithm belonging to this class is
the PAGERANK [12]. We also consider two further algorithms of this class: TRIANGLE

COUNTING [13] and the KCORE decomposition [14]. The other class of algorithms we
examined are those in which the topology of the communication graph changes during
the computation. Both the algorithms belonging to this class that we studied are aimed at
the detection of Connected Components [15,16]. We analysed the behaviour of all these
algorithms when adopting different partitioning approaches, both static and dynamic. In
conclusion, the main contribution of this paper is the presentation, the analysis and the
comparison of a set of vertex-centric problems using different partitioning strategies. We
have considered the following algorithms and partitioning approaches:

• algorithms: PAGERANK, TRIANGLE COUNTING, KCORE Decompositions, Con-
nected Components

• partitioner: Spark Hash, BKW, SWAP, DESC

Each algorithm has been implemented on top of Apache Spark[17] and executed on a
cluster composed by 3 machines, each composed by 32 cores and 128 Gbytes of RAM.

1. Related Works

The problem of graph partitioning has been extensively studied. Recently, due to the in-
creasing size of the datasets, many solutions have been proposed targeting large graphs
and suitable to the current TLAV frameworks. Among many, some target distributed
implementations [18][19] or adopt the streaming model [20][21]. However, the METIS
family of graph partitioning software [22] is still often considered the de facto standard
for near-optimal partitioning in TLAV frameworks [10]. An extensive analysis of all the
methods is beyond the scope of this work and we concentrate in particular on the effects
of a good partitioning strategy in TLAV frameworks. As far of our knowledge, this is the
first work evaluating the impact of different graph partitioning strategy in Apache Spark.
Other works evaluate the impact of graph partitioning on different TLAV framework.
The outcome of such evaluation is not always the same, suggesting that extensive work



must be done in order to understand the benefits of a good balanced partitioner. For what
concern static partitioner evaluation, Salihoglu et al. [23] propose GPS, a Pregel-like
graph processing system, and evaluates static partitioning on it. The framework uses a
BSP model of computation and the graph can remain in memory during the computation.
Their claim is that, using a balanced k-way partitioning, GPS is able to reduce run time
of the PAGERANK algorithm between 2.1x and 2.5x with respect to a random partitioner.
Instead, Connected Components and Single Source Shortest Path get less benefits. They
perform some tests also using Giraph, another Pregel-like framework, and found that a
k-way partitioning gets only marginal improvements. They tested the system also with
a dynamic relabelling technique and found marginal improvement in time limited to the
PAGERANK algorithm. For what concern Hadoop MapReduce, Ibrahim et al. [24] de-
scribe LEEN, a locality-aware and fairness-aware key partitioning to save the network
bandwidth dissipation during the shuffle phase of MapReduce. Experimental evaluation
shows that this approach is up to 40% better with respect to the default Hash partitioner.
However they test their optimization just with a wordcount algorithm and they do not
perform evaluation of algorithms exploiting different communication patterns. Different
results have been obtained by Shao et al [25]. Using Giraph, they found that the perfor-
mance over well partitioned graph might be worse than Hash partitioner in some cases.
The cause is that the local message processing cost in graph computing systems may
surpass the communication cost in several cases. Due to this, they propose a partition
aware module in Giraph to balance the load between local and remote communication.
One work starting an evaluation of the partition strategy with Apache Spark has been pre-
sented recently by Amos et al. [26]. The focus of the work is a system to answer queries
using Spark but, in the evaluation, they consider the problem of choosing the proper di-
mension for the partitions. If the size is too small, the system suffers an overhead for
the management of the partitions. If the size is too large, data are sequentially processed.
They empirically find a good trade-off for their specific application domain but an anal-
ysis of the impact of different partition strategies on other domains and algorithms is not
presented.

Spark [17] is a distributed framework providing in memory computation making use
of Resilient Distributed Datasets (RDD) [27]. RDDs are distributed data structures where
it is possible to apply multiple operators such as Map, Reduce and Join. In Spark, the
RDDs are partitioned by default using an Hash partitioner. The framework provides also
the possibility to use a custom partitioner for data. However in the original and successive
works an evaluation regarding the use of different partitioners is not presented.

2. Data Partitioning

In this paper we consider a set of different vertex-centric algorithms characterised by
different communication/computational patterns targeting distributed computations. For
each of them we evaluate how, even simple partitioning strategies can enhance their per-
formances. The algorithms tested can be grouped into two main families. The algorithms
belonging to the first family keep every vertex of the graph always active during the
whole computation, and it communicates with its neighbours at each iteration. The sec-
ond family of algorithms that we consider in our study selectively deactivate a subset
of vertices during the computation. A detailed description of all the algorithms we im-



plemented and exploited in our study is presented in Section 3. To develop all the algo-
rithms considered in our study, we exploited the standard API of Apache Spark. Even
if the Spark environment currently offers the GraphX library [11] for graph analysis we
developed our own vertex-centric abstraction, in fact, when we started our work, GraphX
was not stable yet, especially when used with massively iterative algorithms. To conduct
our study, we embodied in Spark the different partitioning strategies we decided to apply.
We can describe a partitioner as an entity that takes in input the identifier of a vertex idV
and gives as output the identifier of a partition idP .

2.1. Spark embedded partitioners

Plain Spark already provides two different partitioners hash and range. The first one is
based on a hashing function that takes in input idV and returns the idP of the partition
depending on the behavior of the hashing function adopted. The standard function used
by Spark is based on the module function. Basically, it aims at distributing all the iden-
tifier of the graph in a uniform way. Conversely, the range function aims at distributing
the vertices of the graph on the basis of user provided ranges, e.g., all the nodes whose
identifier is in the range 100− 200 are assigned to partition 2. In our study we exploited
the first one of these two strategies, which we used as a baseline in our comparisons.

2.2. Balanced k-way partitioners

The first class of data decomposition strategies we embodied in Spark is based on the
balanced k-way partitioning. It consists in a static partitioning strategy that decomposes
the graph in k parts each one composed by the same amount of nodes, approximately.
This approach is interesting because, by accepting a certain degree of approximation, it
admits a polynomial time verification of its results (NP-complete). In fact, graph parti-
tion problems usually fall under the category of NP-hard problems. Solutions to these
problems are generally derived using heuristics and approximation algorithms. However,
balanced graph partition problem can be shown to be NP-complete to approximate within
any finite factor. To conduct our study, we decided to use the suite of algorithms for par-
titioning provided by Metis. It provides solutions for partitioning a graph into a config-
urable amount of parts using either the multilevel recursive bisection or the multilevel
k-way partitioning paradigms. As we mentioned, we used the latter approach, indeed, the
multilevel k-way partitioning algorithm provides additional capabilities (e.g., minimize
the resulting subdomain connectivity graph, enforce contiguous partitions, minimize al-
ternative objectives, etc.). To exploit the features provided by Metis in Spark we decided
to organise the computations in two steps instead of embedding the Metis library directly
in the Spark framework. Basically, we give the graph in input to the multilevel balanced
k-way partitioning provided by Metis, then we exploit the result to re-label the vertices
of the graph accordingly to the partitions returned by Metis so that the Spark hash par-
titioner will be able to assign the vertices belonging to the same partition to the same
machine.

2.3. Dynamic partitioners

The other kind of partitioning strategies that we have studied in our work falls in the class
of dynamic partitioners. These approaches do not rely on a pre-computed decomposition



of data, instead, they aim at adjusting the distribution of vertices to the machines that
are more suited to compute them, depending on the behavior of the actual computation.
In particular, we are interested in adjusting the distribution of the computation workload
when the amount of active nodes decreases. To this end, in our study we investigated two
different approaches of dynamic partitioning. The first one is based on a reduction of the
partitions that is merely proportional to the number of active nodes. This strategy can be
applied to any algorithm because it does not require any additional information about the
nodes except the number of nodes that are active at a certain stage of the computation.
We called this strategy “DESC”. The other strategy we studied can be applied only to
the algorithms that during their computation label the nodes of the graph in a way such
that the nodes that communicate more one each others share the same label. In this case
the dynamic partitioning strategy “clusters” the nodes sharing the same label in the same
partition, when possible. The name of this strategy is “SWAP”.

3. Case studies

As we mentioned above, we evaluated the impact of different partitioning strategies with
several algorithms. This section briefly presents such algorithms.

3.1. PAGERANK

PAGERANK [12] is one of the most popular algorithms to determine the relevance of a
node in a graph. It is measured by means of an iterative algorithm characterised by a
neighbour-to-neighbour communication pattern. Basically, every node is characterised
by a value, representing its relevance. For each iterative step of the computation, every
node redistributes its value among its neighbours. At the end of the iterative step each
node sums up the “contributions” received, the resulting value represents its updated
relevance.

3.2. TRIANGLE COUNTING

TRIANGLE COUNTING is a well known technique for computing the clustering coeffi-
cient of a graph. More in detail, a triangle exists when a vertex has two adjacent vertices
that are also adjacent to each other. Several sequential and parallel solutions have been
proposed for this problem. The algorithm we adopted in this paper is a vertex-centric
version of the solution proposed by Suri and Vassilvitskii [13]. In the first step of the
algorithm each vertex, in parallel, detects all the triples it belongs to that have two neigh-
bours having a higher node degree. In the second step each vertex, in parallel, gathers all
the messages received and, for each of them, checks the existence of a third edge closing
the triple. The algorithm is characterized by a neighbour-to-neighbour communication
pattern. The neighbourhood of each node is fixed, i.e. does not change during the com-
putation steps. In the first step all the vertices are performing computation, whereas in
the second step only the nodes which have received a message actually compute.



3.3. KCORE Decomposition

In many cases the study of the structure of a large graph can be eased by partitioning it
into smaller sub-graph, which are easier to handle. To this aim, the concept of the KCORE
decomposition of a graph results very useful. A KCORE of a graph G is a maximal con-
nected subgraph of G in which all vertices have degree at least k. K-coreness is exploited
to identify cohesive group of nodes in social networks, i.e. subset of nodes among which
there are strong, frequent ties or to identify the most suitable nodes to spread a piece of
information in epidemic protocols. Our algorithm is based on the solution proposed by
Montresor et al. [14], which computes the K-coreness of each node using an iterative
epidemic algorithm. Each node maintains an estimation of the coreness of its neighbours,
which is initialized to infinity, whereas the local coreness of each node is initialized to
its degree. At each step, each node sends the current value of its local coreness to its
neighbours. When a node is updated about the coreness of one of its neighbours, if it is
lower than its current local estimation, it records the new estimated value and checks if
its local coreness has been changed by this update. In case, it sends its new coreness to its
neighbours. The algorithm terminates when messages are no longer sent. As in PAGER-
ANK, the communication pattern characterizing the algorithm is a fixed neighbour-to-
neighbour pattern. However, differently from PAGERANK, nodes not participate to the
message exchange at each iteration because only nodes that updates their coreness send
messages in that iteration.

3.4. HASH-TO-MIN

Rastogi et al. [15] surveyed several algorithms for computing the connected components
of a graph. All of them are characterized by associating a unique identifier to each node of
the graph and by identifying each connected component through the minimum identifier
of the nodes belonging to that component. In HASH-TO-MIN, each node initializes its
own cluster to a set including itself and its neighbours. During the computation each node
selects the node vmin with the minimum identifier in its cluster and sends its cluster to
vmin and vmin to all other nodes of the cluster. In the receive phase, each node updates
its cluster by merging all the received clusters. If the resulting cluster is unchanged from
the previous iteration, the node do not exchange messages in the following steps, but it
may receive a message which re-activates its computation. At the end of the computation,
each node of a connected component is tagged with the minimum identifier, whereas this
latter node has gathered all the identifiers of its connected component. In the HASH-TO-
MIN algorithm, the communication pattern is not fixed, since each node may choose a
different set of recipients at each iteration (the set of recipients is defined by the nodes in
its cluster). Furthermore, as in KCORE, a node may be de-activated at some iteration.

3.5. CRACKER

CRACKER [16] is an algorithm optimizing HASH-TO-MIN. Each node checks its neigh-
bourhood and autonomously decides if its participation to the computation of the con-
nected components can be stopped. In any case, the node maintains the connectivity with
its neighbours. Like in HASH-TO-MIN, the communication pattern is not fixed, but, with
respect to HASH-TO-MIN when a node decides to stop its participation to the computa-
tion of the connected components, it may not be reactivated.



Table 1. Completion time with synthetic graphs (best times are in bold)

size
KCORE PAGERANK TRI COUNT HASHTOMIN CRACKER

HASH BKW HASH BKW HASH BKW HASH BKW HASH BKW

NEWMAN

1M 44 42 111 100 43 42 160 118 65 63
2M 60 58 162 137 65 65 331 188 95 82
4M 90 87 274 217 110 109 633 347 153 128

POWERLAW

1M 109 110 149 135 83 88 125 90 66 58
2M 182 180 235 207 156 167 147 152 85 81
4M 327 275 431 358 340 358 276 273 138 134

WATTZ

1M 111 107 107 82 41 40 137 97 73 58
2M 171 167 150 123 62 61 172 149 101 80
4M 286 275 253 196 103 101 326 270 160 130

4. Experimental evaluation

The experimental evaluation has been conducted on 96 cores of a cluster of 3 machines,
each composed by 32 cores and 128 GB of RAM. The evaluation has considered both
the static partitioning, in which the partition is statically created before the computation,
and the dynamic partitioning in which the partitioning is performed during the computa-
tion. Experiments measured the completion time without considering the time needed to
compute the partitioning, i.e. the partitioning of the nodes is supposed to be given at the
start of the computation.

4.1. Static Partitioning, Synthetic Graphs

These experiments measured the completion time of KCORE, PAGERANK, CRACKER,
TRIANGLE COUNTING and HASH-TO-MIN with three different dataset sizes (num-
ber of nodes) in the set {1000000, 2000000, 4000000}. The graphs type considered
are the Watts-Strogartz (WATTZ), Newman-Watts-Strogartz (NEWMAN) and Power-
law (POWERLAW) and have been generated by means of the Snap library [28]. The re-
sults are shown in Table 1. We can observe that a BKW partitioning of the graph yields
better completion times in almost all cases, with the exception being the TRIANGLE
COUNTING algorithm, when applied to the powerlaw graph. The TRIANGLE COUNTING
is not an iterative algorithm like the others and consists of just two steps of computation.
As a consequence it performs communication only one time, hence the advantages of a
BKW partitioner are not evident.

4.2. Static Partitioning, Real Graphs

This experiment measured the completion time of three algorithms: CRACKER, PAGER-
ANK and KCORE. We considered two real graphs: the Youtube social network and the
road of Texas1. All the values are computed considering the average of six independent
runs. From the results shown in Figure 1, we can conclude what follows. First, using
HASH the completion time is almost always greater than when using BKW for all the algo-
rithms considered. Interestingly, the difference is smaller for the Youtube social network.
In the road network dataset by nature a lot of nodes have degree equals to 1 or 2 and
also the maximum vertex degree is in the order of tens. Due to this a BKW partitioner is
able to cut a smaller amount of edges with respect to a social network graph. This results
in the majority of the computation not requiring communication between different par-

1both graphs have been taken from snap.standford.edu
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Figure 1. Execution time with various static partitioning strategies

titions. Second, the biggest improvement from HASH to BKW is obtained with PAGER-
ANK, due to its communication pattern. In PAGERANK all the nodes communicate with
their neighbours at every iteration. Therefore, a partitioning of the nodes according to
the topology of the graph reduces the inter-partition communications, which in turns re-
duces the completion time. The third aspect worth noticing is the fact that increasing the
number of partitions worsens the performances. In principle, an higher number of parti-
tions is beneficial as it would allow the scheduler for a better allocation of the load on
the workers. However, the increased costs in term of inter-partition communications is
dominant, and it leads to a longer completion time.

4.3. Dynamic Partitioning

In order to evaluate the performances of the dynamic partitioning, we set up an experi-
ment in which we compare the performance of CRACKER when adopting the HASH strat-
egy against the performance it achieves with DESC and SWAP dynamic partitioners.
The experiment has been conducted using the graph representing the road of Califor-
nia2. This graph consists of around 2 million nodes and 2.7 million edges, with a large
connected components that almost includes all the graph. The results are presented in
Figure 2. The SWAP strategy yields slightly better results than HASH, as it successfully
reallocates active nodes among the workers. However, we believe this behaviour is only
beneficial when executing algorithms that do not reactivate previously deactivated nodes
and in which the rate of deactivation is relatively steady. Both characteristics match with
the behaviour of CRACKER. By comparisons, the DESC has basically the same perfor-
mances that HASH, as it takes a longer time to reallocate, as in CRACKER the label of the
nodes change continuously.

5. Conclusion

2taken from snap.standford.edu
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In this paper we conducted an anal-
ysis focusing on the adoption of par-
titioning strategies supporting Big-
Data graph computations. The analy-
sis was conducted by measuring the
impact of both static and dynamic
partitioning approaches on several
different algorithms, working on data
structured as a graph. Our work es-
pecially focused on the impact of
different partitioning strategies when
applied to BSP-like computational
frameworks. In particular our investi-
gation focused on Apache Spark, one
of the most widely used distributed
framework targeting BigData computations. From the result obtained, we observed that
a carefully chosen partitioning strategy can lead to an improvement in the computational
performances, both with static and dynamic partitioning. As a future work, we plan to
implement more elaborate strategy dynamic partitioning, and to experiment with them
in larger graphs.
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